Ⅰ 初中数学函数大全(分类)
一次函数I、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即 △y/△x=k
III、一次函数的图象及性质:
1. 作法与图形:通过如下3个步骤(1)列表(一般找4-6个点);(2)描点;(3)连线,可以作出一次函数的图象。(用平滑的直线连接)
2. 性质:在一次函数图象上的任意一点P(x,y),都满足等式:y=kx+b。
3. k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:
y1=kx1+b① 和 y2=kx2+b②。
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
V、在y=kx+b中,两个坐标系必定经过(0,b)和(-b/k,0)两点
VI、一次函数在生活中的应用
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
反比例函数
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数的图像为双曲线。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
二次函数
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c (a≠0)
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的函数
二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 对于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/(4a))
交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]
其中x1,2= (-b±√(b^2-4ac))/(2a)
注:在3种形式的互相转化中,有如下关系:
______
h=-b/(2a) k=(4ac-b^2)/(4a) x₁,x₂=(-b±√b^2-4ac)/2a
二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
二次函数可以看出,二次函数的图像是一条抛物线。
二次函数标准画法步骤
(在平面直角坐标系上)
(1)列表
(2)描点
(3)连线
抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
_______
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{x|x≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax^2
y=a(x-h)^2
y=a(x-h)^2+k
y=ax^2+bx+c
顶点坐标
(0,0)
(h,0)
(h,k)
(-b/2a,(4ac-b^2)/4a)
对 称 轴
x=0
x=h
x=h
x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x₂-x₁| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点)
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
Ⅱ 如何用几何画板动态演示二次函数函数图像
如何用几何画板作二次函数图
二次函数是描述客观世界运动变化规律的数学模型,是以变化与对应为基础的重要数学概
念。要让学生理解二次函数的变量之间的相互依赖关系,清楚地看到二次函数的几种形式
y=ax2
、
y=ax2
+k
、
y=
(
x
-
h
)
2
、
y=a
(
x
-
h
)
2+k
、
y=ax2+bx+c
之间的平移、对称关系,
需要给学生提供大量的图象素材,
让学生观察、
分析与对比。
当然最好还是让他们直观地观
看当函数中的几个参数
a
、
b
、
c
或参数
h
、
k
发生变化时,图形是如何变化的,看到在运动
和变化的过程中变量之间的对应关系。
这个靠老师口头讲解、
黑板上画图都很难达到这个要
求,而利用多媒体技术可以帮助我们做到这一点。
几何画板与
Z+Z
教育平台可以让抽象的函数问题变得直观形象、化静为动,动态地演
示作图过程,
动态地演示函数值随自变量的变化而变化的情景,
有利于学生理解函数的概念、
图象与性质。如何有效地把信息技术和数学教学进行整合?如何把几何画板与
Z+Z
教育平
台这些新的教学工具完美地融合到二次函数的教学过程中?下面我简单介绍一下用几何画
板制作二次函数课件:
我想用几何画板制作课件的目标主要有三个:
1
、快速地作出我们想要的二次函数的
图象;
2
、动态演示几种形式的二次函数的图象,帮助学生理解二次函数的图象、性质及几
种形式的二次函数图象之间的平移与对称关系;
3
、动态演示二次函数的函数值随自变量的
变化而变化的情景,帮助学生理解二次函数的单调性与二次函数的极值问题。
一、利用几何画板作二次函数
y=3x2
-
4x+1
的图象。这种形式的图象比较容易在几
何画板窗口上画出,教师可以在上课过程中即兴作图。
1
、建立平面直角坐标系。在进入几何画板窗口后,单击编辑窗口上的
“
图面
”
选择
“
显
示坐标轴
”
,
此时你可以看到窗口上出现了一个坐标轴,
你拉动
x
轴正半轴上的一个滑动点,
可以改变单位长度的大小。
2
、画点。点击编辑窗口左侧的工具栏中的画点工具
,在
x
轴上任意处单击,可以在
x
轴上做出一个点,如点
A
。如果你想把这个点改为别的名字,你可以用手形工具
,
双击字母
A
,在出现的对话框中输入你想要的字母。
3
、测算坐标。单击点
A
,单击上编辑窗口的
“
测算
”
,选择
“
坐标
”
,可以看到编辑窗
口左上角出现点
A
的坐标
,如
A(-2.18,0.00)
4
、
分离坐标。
把坐标
A
中的横坐标分离出来,
当作二次函数
y=3x2
-
4x+1
的自变量
x
。
双击编辑窗口中的点
A
的坐标
(-2.18,0.00)
会出现一个计算器,
然后单击计算器上的
“
值
”
,
接着选择点
A
下拉菜单中的
x
,再按确定,就可以将
A
的横坐标
XA=-2.18
分离出来
Ⅲ 三角函数,的函数表的大全
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα k∈z cos(2kπ+α)=cosα k∈z tan(2kπ+α)=tanα k∈z cot(2kπ+α)=cotα k∈z sec(2kπ+α)=secα k∈z csc(2kπ+α)=cscα k∈z
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα k∈z cos(π+α)=-cosα k∈z tan(π+α)=tanα k∈z cot(π+α)=cotα k∈z sec(π+α)=-secα k∈z csc(π+α)=-cscα k∈z
公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sec(-α)=secα csc(-α)=-cscα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα
公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα
诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。
“ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。编辑本段其他三角函数知识
同角三角函数的基本关系式
倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1
商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα
平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/(1-tan^2(α))
半角的正弦、余弦和正切公式
sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
万能公式
sinα=2tan(α/2)/(1+tan^2(α/2)) cosα=(1-tan^2(α/2))/(1+tan^2(α/2)) tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三角函数的和差化积公式
sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2) sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2) cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2) cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)
三角函数的积化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)] cosα·sinβ=0.5[sin(α+β)-sin(α-β)] cosα·cosβ=0.5[cos(α+β)+cos(α-β)] sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)]
公式推导过程
万能公式推导 sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三倍角公式推导 tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα
和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
sinπ/6=1/2,cosπ/6=√3/2, tαnπ/6=√3/3 , cotπ/6=√3
sinπ/4=√2/2, cosπ/4=√2/2, tαnπ/4=1 ,cotπ/4=1
sinπ/3 =√3/2, cosπ/3 =1/2, tαnπ/3 =√3, cotπ/3 =√3/3
sinπ/2=1, cosπ/2=0, tαnπ/2不存在,cotπ/2=0
呵呵,还想知道什么可以再问我
Ⅳ 2次函数图像与x轴交点的坐标过程大全
例如:y=x2+x-6的图像与x轴的交点的横坐标,解题过程请详细的将下:
设2次函数为ax^2+bx+c,二次函数与x轴相交时纵坐标为0
所以列方程ax^2+bx+c=0
求解出x的之即为横坐标
x^2+x-6
你就让x2+x-6=0
(x+3)(x-2)=0
x1=-3,x2=2
Ⅳ 能不能用excel自动生成函数的图像
1以y=1/(1+x)为例,新建一个Excel文件。打开,找到其中的一个列,比如A列,在第一单元格中输入变量值,如A1中输入x。在A2~A10单元格中输入变量的取值1,2,3,4……10。
Ⅵ 数学中的函数是什么概念啊
什么是泛函分析
泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。
泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。
赋范线性空间
从现代观点来看,泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间,其上的范数由一个内积导出。这类空间是量子力学数学描述的基础。更一般的泛函分析也研究Fréchet空间和拓扑向量空间等没有定义范数的空间。
泛函分析所研究的一个重要对象是巴拿赫空间和希尔伯特空间上的连续线性算子。这类算子可以导出C*代数和其他算子代数的基本概念。
1. 希尔伯特空间
希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。
2. 巴拿赫空间
一般的巴拿赫空间比较复杂,例如没有通用的办法构造其上的一组基。
对于每个实数p,如果p ≥ 1,一个巴拿赫空间的例子是“所有绝对值的p次方的积分收敛的勒贝格可测函数”所构成的空间。(参看Lp空间)
在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。
微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。
主要结果和定理
泛函分析的主要定理包括:
1. 一致有界定理(亦称共鸣定理),该定理描述一族有界算子的性质。
2. 谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学的数学描述中起到了核心作用。
3. 罕-巴拿赫定理(Hahn-Banach Theorem)研究了如何将一个算子保范数地从一个子空间延拓到整个空间。另一个相关结果是对偶空间的非平凡性。
4. 开映射定理和闭图像定理。
泛函分析与选择公理
泛函分析所研究的大部分空间都是无穷维的。为了证明无穷维向量空间存在一组基,必须要使用佐恩引理(Zorn's Leema)。此外,泛函分析中大部分重要定理都构建与罕-巴拿赫定理的基础之上,而该定理本身就是选择公理(Axiom of Choice)弱于布伦素理想定理(Boolean prime ideal theorem)的一个形式。
泛函分析的研究现状
泛函分析目前包括以下分支:
1. 软分析(soft analysis),其目标是将数学分析用拓扑群、拓扑环和拓扑向量空间的语言表述。
2. 巴拿赫空间的几何结构,以Jean Bourgain的一系列工作为代表。
3. 非交换几何,此方向的主要贡献者包括Alain Connes,其部分工作是以George Mackey的遍历论中的结果为基础的。
4. 与量子力学相关的理论,狭义上被称为数学物理,从更广义的角度来看,如按照Israel Gelfand所述,其包含表示论的大部分类型的问题。
泛函分析的产生
十九世纪以来,数学的发展进入了一个新的阶段。这就是,由于对欧几里得第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。
本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的着作中,出现了把分析学一般化的萌芽。随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。
由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。这种相似在积分方程论中表现得就更为突出了。泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。
非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性。这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间。
这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系。现代数学的发展却是要求建立两个任意集合之间的某种对应关系。
这里我们先介绍一下算子的概念。算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子。
研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析。在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了。
泛函分析的特点和内容
泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。
泛函分析对于研究现代物理学是一个有力的工具。n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多自由度力学系统的例子。一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的量子场理论就属于无穷自由度系统。
正如研究有穷自由度系统要求 n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学。古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。
泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。
半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象,和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力地推动着其他不少分析学科的发展。它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一。今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。
泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。
Ⅶ 谁有MATLAB绘图大全啊
matlab绘图大全 一。 二维数据曲线图1.1 绘制 单根二维曲线 plot 函数的基本调用 格式为: plot(x,y) 其中x和y为长度相同的向量,分别用于存储x坐标 和y坐标数据。 例1-1 在0≤x≤2p区间内,绘制曲线 y=2e-0.5xcos(4πx)程序 如下:x=0:pi/100:2*pi;y=2*exp(-0.5*x).*cos(4*pi*x);plot(x,y) 例1-2 绘制曲线。 程序如下:t=0:0.1:2*pi;x=t.*sin(3*t);y=t.*sin(t).*sin(t);plot(x,y); plot函数最简单的调用格式是只包含一个输入参数 : plot(x)在这种情况下,当x是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 1.2 绘制多根二维曲线 1.plot函数的输入参数是矩阵 形式 (1) 当x是向量,y是有一维与x同维的矩阵时,则绘制出多根不同颜色 的曲线。曲线条数等于y矩阵的另一维数,x被作为这些曲线共同的横坐标。 (2) 当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。 (3) 对只包含一个输入参数的plot函数,当输入参数是实矩阵时,则按列绘制每列元素值相对其下标的曲线,曲线条数等于输入参数矩阵的列数。 当输入参数是复数矩阵时,则按列分别以元素实部和虚部为横、纵坐标绘制多条曲线。 2.含多个输入参数的plot函数 调用格式为:plot(x1,y1,x2,y2,…,xn,yn)(1) 当输入参数都为向量时,x1和y1,x2和y2,…,xn和yn分别组成一组向量对,每一组向量对的长度可以不同。每一向量对可以绘制出一条曲线,这样可以在同一坐标内绘制出多条曲线。 (2) 当输入参数有矩阵形式时,配对的x,y按对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。 例1-3 分析下列程序绘制的曲线。 x1=linspace(0,2*pi,100);x2=linspace(0,3*pi,100);x3=linspace(0,4*pi,100);y1=sin(x1);y2=1+sin(x2);y3=2+sin(x3);x=[x1;x2;x3]';y=[y1;y2;y3]';plot(x,y,x1,y1-1) 3.具有两个纵坐标标度的图形 在MATLAB中,如果需要绘制出具有不同纵坐标标度的两个图形,可以使用plotyy绘图函数。调用格式为: plotyy(x1,y1,x2,y2)其中x1,y1对应一条曲线,x2,y2对应另一条曲线。横坐标的标度相同,纵坐标有两个,左纵坐标用于x1,y1数据对,右纵坐标用于x2,y2数据对。 例1-4 用不同标度在同一坐标内绘制曲线y1=0.2e-0.5xcos(4πx) 和y2=2e-0.5xcos(πx)。 程序如下:x=0:pi/100:2*pi;y1=0.2*exp(-0.5*x).*cos(4*pi*x);y2=2*exp(-0.5*x).*cos(pi*x);plotyy(x,y1,x,y2); 4.图形保持 hold on/off命令 控制 是保持原有图形还是刷新原有图形,不带参数的hold命令在两种状态之间进行切换。 例1-5 采用图形保持,在同一坐标内绘制曲线y1=0.2e-0.5xcos(4πx) 和y2=2e-0.5xcos(πx)。 程序如下:x=0:pi/100:2*pi;y1=0.2*exp(-0.5*x).*cos(4*pi*x);plot(x,y1)hold ony2=2*exp(-0.5*x).*cos(pi*x);plot(x,y2);hold off 1.3 设置曲线样式 MATLAB提供了一些绘图选项,用于确定所绘曲线的线型、颜色和数据点标记符号,它们可以组合使用。例如,“b-.”表示蓝色点划线,“y:d”表示黄色虚线并用菱形符标记数据点。当选项省略时,MATLAB规定,线型一律用实线,颜色将根据曲线的先后顺序依次。 要设置曲线样式可以在plot函数中加绘图选项,其调用格式为: plot(x1,y1,选项1,x2,y2,选项2,…,xn,yn,选项n) 例1-6 在同一坐标内,分别用不同线型和颜色绘制曲线y1=0.2e-0.5xcos(4πx) 和y2=2e-0.5xcos(πx),标记两曲线交叉点。 程序如下:x=linspace(0,2*pi,1000);y1=0.2*exp(-0.5*x).*cos(4*pi*x);y2=2*exp(-0.5*x).*cos(pi*x);k=find(abs(y1-y2)<1e-2); %查找y1与y2相等点(近似相等)的下标 x1=x(k); %取y1与y2相等点的x坐标 y3=0.2*exp(-0.5*x1).*cos(4*pi*x1); %求y1与y2值相等点的y坐标 plot(x,y1,x,y2,'k:',x1,y3,'bp'); 1.4 图形标注与坐标控制 1.图形标注 有关图形标注函数的调用格式为:title(图形名称) xlabel(x轴说明) ylabel(y轴说明) text (x,y,图形说明) legend(图例1,图例2,…) 函数中的说明文字,除使用标准的ASCII字符外,还可使用LaTeX格式的控制字符,这样就可以在图形上添加希腊字母、数学符号及公式等内容。例如,text(0.3,0.5,‘sin({\omega}t+{\beta})’)将得到标注效果sin(ωt+β)。 例1-7 在0≤x≤2p区间内,绘制曲线y1=2e-0.5x和y2=cos(4πx),并给图形添加图形标注。 程序如下:x=0:pi/100:2*pi;y1=2*exp(-0.5*x);y2=cos(4*pi*x);plot(x,y1,x,y2)title('x from 0 to 2{\pi}'); %加图形标题 xlabel('Variable X'); %加X轴说明 ylabel('Variable Y'); %加Y轴说明 text(0.8,1.5,'曲线y1=2e^{-0.5x}'); %在指定位置添加图形说明 text(2.5,1.1,'曲线y2=cos(4{\pi}x)'); legend(‘y1’,‘ y2’) %加图例 2.坐标控制 axis函数 的调用格式为: axis([xmin xmax ymin ymax zmin zmax])axis函数功能丰富,常用的格式还有: axis equal:纵、横坐标轴采用等长刻度。 axis square:产生正方形坐标系(缺省为矩形)。 axis auto:使用缺省设置。 axis off:取消坐标轴。 axis on:显示 坐标轴。 给坐标加网格线用grid命令来控制。grid on/off命令控制是画还是不画网格线,不带参数的grid命令在两种状态之间进行切换。 给坐标加边框用box命令来控制。box on/off命令控制是加还是不加边框线,不带参数的box命令在两种状态之间进行切换。 例1-8 在同一坐标中,可以绘制3个同心圆,并加坐标控制。 程序如下:t=0:0.01:2*pi;x=exp(i*t);y=[x;2*x;3*x]';plot(y)grid on; %加网格线 box on; %加坐标边框 axis equal %坐标轴采用等刻度 1.5 图形的可视化编辑 MATLAB 6.5版本在图形窗口中提供了可视化的图形编辑工具,利用图形窗口菜单栏或工具栏中的有关命令可以完成对窗口中各种图形对象的编辑处理。 在图形窗口上有一个菜单栏和工具栏。菜单栏包含File、Edit、View、Insert、Tools、Window和Help共7个菜单项,工具栏包含11个命令按钮。 1.6 对函数自适应采样的绘图函数 fplot函数的调用格式为: fplot(fname,lims,tol,选项) 其中fname为函数名,以字符串形式出现,lims为x,y的取值范围,tol为相对允许误差,其系统 默认值为2e-3。选项定义与plot函数相同。 例1-9 用fplot函数绘制f(x)=cos(tan(πx))的曲线。 命令如下:fplot('cos(tan(pi*x))',[ 0,1],1e-4) 1.7 图形窗口的分割 subplot函数的调用格式为: subplot(m,n,p)该函数将当前图形窗口分成m×n个绘图区,即每行n个,共m行,区号按行优先编号,且选定第p个区为当前活动区。在每一个绘图区允许以不同的坐标系单独绘制图形。 例5-10 在图形窗口中,以子图形式同时绘制多根曲线。 二。 其他二维图形2.1 其他坐标系下的二维数据曲线图 1.对数坐标图形 MATLAB提供了绘制对数和半对数坐标曲线的函数,调用格式为: semilogx(x1,y1,选项1,x2,y2,选项2,…) semilogy(x1,y1,选项1,x2,y2,选项2,…) loglog(x1,y1,选项1,x2,y2,选项2,…) 2.极坐标图 polar函数用来绘制极坐标图,其调用格式为: polar(theta,rho,选项) 其中theta为极坐标极角,rho为极坐标矢径,选项的内容与plot函数相似。 例1-12 绘制r=sin(t)cos(t)的极坐标图,并标记数据点。 程序如下:t=0:pi/50:2*pi;r=sin(t).*cos(t);polar(t,r,'-*'); 2.2 二维统计分析图 在MATLAB中,二维统计分析图形很多,常见的有条形图、阶梯图、杆图和填充图等,所采用的函数分别是: bar(x,y,选项) stairs(x,y,选项) stem(x,y,选项) fill(x1,y1,选项1,x2,y2,选项2,…) 例1-13 分别以条形图、阶梯图、杆图和填充图形式绘制曲线y=2sin(x)。 程序如下:x=0:pi/10:2*pi;y=2*sin(x);subplot(2,2,1);bar(x,y,'g');title('bar(x,y,''g'')');axis([0,7,-2,2]);subplot(2,2,2);stairs(x,y,'b');title('stairs(x,y,''b'')');axis([0,7,-2,2]);subplot(2,2,3);stem(x,y,'k');title('stem(x,y,''k'')');axis([0,7,-2,2]);subplot(2,2,4);fill(x,y,'y');title('fill(x,y,''y'')');axis([0,7,-2,2]); MATLAB提供的统计分析绘图函数还有很多,例如,用来表示各元素占总和的百分比的饼图、复数的相量图等等。 例1-14 绘制图形: (1) 某企业全年各季度的产值(单位:万元)分别为:2347,1827,2043,3025,试用饼图作统计分析。 (2) 绘制复数的相量图:7+2.9i、2-3i和-1.5-6i。 程序如下:subplot(1,2,1);pie([2347,1827,2043,3025]);title('饼图'); legend('一季度','二季度','三季度','四季度'); subplot(1,2,2);compass([7+2.9i,2-3i,-1.5-6i]);title('相量图'); 三。 隐函数绘图MATLAB提供了一个ezplot函数绘制隐函数图形,下面介绍其用法。 (1) 对于函数f = f(x),ezplot函数的调用格式为: ezplot(f):在默认区间-2π<x<2π绘制f = f(x)的图形。 ezplot(f, [a,b]):在区间a<x<b绘制f = f(x)的图形。 (2) 对于隐函数f = f(x,y),ezplot函数的调用格式为: ezplot(f):在默认区间-2π<x<2π和-2π<y<2π绘制f(x,y) = 0的图形。 ezplot(f, [xmin,xmax,ymin,ymax]):在区间xmin<x<xmax和ymin<y<ymax绘制f(x,y) = 0的图形。 ezplot(f, [a,b]):在区间a<x<b和a<y< b绘制f(x,y) = 0的图形。 (3) 对于参数方程 x = x(t)和y = y(t),ezplot函数的调用格式为: ezplot(x,y):在默认区间0<t<2π绘制x=x(t)和y=y(t)的图形。 ezplot(x,y, [tmin,tmax]):在区间tmin < t < tmax绘制x=x(t)和y=y(t)的图形。 例1-15 隐函数绘图应用 举例。 程序如下:subplot(2,2,1);ezplot('x^2+y^2-9');axis equalsubplot(2,2,2);ezplot('x^3+y^3-5*x*y+1/5')subplot(2,2,3);ezplot('cos(tan(pi*x))',[ 0,1])subplot(2,2,4);ezplot('8*cos(t)','4*sqrt(2)*sin(t)',[0,2*pi]) 四。三维图形4.1 三维曲线 plot3函数与plot函数用法十分相似,其调用格式为: plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n) 其中每一组x,y,z组成一组曲线的坐标参数,选项的定义和plot函数相同。当x,y,z是同维向量时,则x,y,z 对应元素构成一条三维曲线。当x,y,z是同维矩阵时,则以x,y,z对应列元素绘制三维曲线,曲线条数等于矩阵列数。 例1-16 绘制三维曲线。 程序如下:t=0:pi/100:20*pi;x=sin(t);y=cos(t);z=t.*sin(t).*cos(t);plot3(x,y,z);title('Line in 3-D Space');xlabel('X');ylabel('Y');zlabel('Z');grid on; 4.2 三维曲面 1.产生三维数据 在MATLAB中,利用meshgrid函数产生平面区域内的网格坐标矩阵。其格式为: x=a:d1:b; y=c:d2:d;[X,Y]=meshgrid(x,y);语句执行后,矩阵X的每一行都是向量x,行数等于向量y的元素的个数,矩阵Y的每一列都是向量y,列数等于向量x的元素的个数。 2.绘制三维曲面的函数 surf函数和mesh函数的调用格式为: mesh(x,y,z,c)surf(x,y,z,c)一般情况下,x,y,z是维数相同的矩阵。x,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜色范围。 例1-17 绘制三维曲面图z=sin(x+sin(y))-x/10。 程序如下:[x,y]=meshgrid(0:0.25:4*pi);z=sin(x+sin(y))-x/10;mesh(x,y,z);axis([0 4*pi 0 4*pi -2.5 1]);此外,还有带等高线的三维网格曲面函数meshc和带底座的三维网格曲面函数meshz。其用法与mesh类似,不同的是meshc还在xy平面上绘制曲面在z轴方向的等高线,meshz还在xy平面上绘制曲面的底座。 例1-18 在xy平面内选择区域[-8,8]×[-8,8],绘制4种三维曲面图。 程序如下:[x,y]=meshgrid(-8:0.5:8);z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2+eps);subplot(2,2,1);mesh(x,y,z);title('mesh(x,y,z)')subplot(2,2,2);meshc(x,y,z);title('meshc(x,y,z)')subplot(2,2,3);meshz(x,y,z)title('meshz(x,y,z)')subplot(2,2,4);surf(x,y,z);title('surf(x,y,z)') 3.标准三维曲面 sphere函数的调用格式为: [x,y,z]=sphere(n)cylinder函数的调用格式为: [x,y,z]= cylinder(R,n)MATLAB还有一个peaks 函数,称为多峰函数,常用于三维曲面的演示。 <!--[if !supportEmptyParas]--> <!--[endif]-->例1-19 绘制标准三维曲面图形。 程序如下:t=0:pi/20:2*pi;[x,y,z]= cylinder(2+sin(t),30);subplot(2,2,1);surf(x,y,z);subplot(2,2,2);[x,y,z]=sphere;surf(x,y,z);subplot(2,1,2);[x,y,z]=peaks(30); surf(x,y,z);<!--[if !supportEmptyParas]--> <!--[endif]-->4.3 其他三维图形 在介绍二维图形时,曾提到条形图、杆图、饼图和填充图等特殊图形,它们还可以以三维形式出现,使用的函数分别是bar3、stem3、pie3 和fill3。 bar3函数绘制三维条形图,常用格式为: bar3(y)bar3(x,y) stem3函数绘制离散序列数据的三维杆图,常用格式为: stem3(z)stem3(x,y,z)pie3函数绘制三维饼图,常用格式为: pie3(x)fill3函数等效于三维函数fill,可在三维空间内绘制出填充过的多边形,常用格式为: fill3(x,y,z,c)<!--[if !supportEmptyParas]--> <!--[endif]-->例1-20 绘制三维图形: (1) 绘制魔方阵的三维条形图。 (2) 以三维杆图形式绘制曲线y=2sin(x)。 (3) 已知x=[2347,1827,2043,3025],绘制饼图。 (4) 用随机的顶点坐标值画出五个黄色三角形。 程序如下:subplot(2,2,1);bar3(magic(4))subplot(2,2,2);y=2*sin(0:pi/10:2*pi);stem3(y);subplot(2,2,3);pie3([2347,1827,2043,3025]);subplot(2,2,4);fill3(rand(3,5),rand(3,5),rand(3,5), 'y' ) 例1-21 绘制多峰函数的瀑布图和等高线图。 程序如下:subplot(1,2,1);[X,Y,Z]=peaks(30);waterfall(X,Y,Z)xlabel('X-axis'),ylabel('Y-axis'),zlabel('Z-axis');subplot(1,2,2);contour3(X,Y,Z,12,'k'); %其中12代表高度的等级数 xlabel('X-axis'),ylabel('Y-axis'),zlabel('Z-axis');<!--[if !supportEmptyParas]--> 五。 图形修饰处理5.1 视点处理 MATLAB提供了设置视点的函数view,其调用格式为: view(az,el)其中az为方位角,el为仰角,它们均以度为单位。系统缺省的视点定义为方位角-37.5°,仰角30°。 例5-22 从不同视点观察三维曲线。 5.2 色彩处理 1.颜色的向量表示 MATLAB除用字符表示颜色外,还可以用含有3个元素的向量表示颜色。向量元素在[0,1]范围取值,3个元素分别表示红、绿、蓝3种颜色的相对亮度,称为RGB三元组。 <!--[if !supportEmptyParas]--> <!--[endif]-->2.色图 色图(Color map)是MATLAB系统引入的概念。在MATLAB中,每个图形窗口只能有一个色图。色图是m×3 的数值矩阵,它的每一行是RGB三元组。色图矩阵可以人为地生成,也可以调用MATLAB提供的函数来定义色图矩阵。 3.三维表面图形的着色 三维表面图实际上就是在网格图的每一个网格片上涂上颜色。surf函数用缺省的着色方式对网格片着色。除此之外,还可以用shading命令来改变着色方式。 shading faceted命令将每个网格片用其高度对应的颜色进行着色,但网格线仍保留着,其颜色是黑色。这是系统的缺省着色方式。 shading flat命令将每个网格片用同一个颜色进行着色,且网格线也用相应的颜色,从而使得图形表面显得更加光滑。 shading interp命令在网格片内采用颜色插值处理,得出的表面图显得最光滑。 例1-23 3种图形着色方式的效果展示。 程序如下:[x,y,z]=sphere(20);colormap(copper);subplot(1,3,1);surf(x,y,z);axis equalsubplot(1,3,2);surf(x,y,z);shading flat;axis equalsubplot(1,3,3);surf(x,y,z);shading interp;axis equal 5.3 光照处理 MATLAB提供了灯光设置的函数,其调用格式为: light('Color',选项1,'Style',选项2,'Position',选项3) <!--[if !supportEmptyParas]--> <!--[endif]-->例5-24 光照处理后的球面。 程序如下:[x,y,z]=sphere(20);subplot(1,2,1);surf(x,y,z);axis equal;light('Posi',[0,1,1]);shading interp;hold on;plot3(0,1,1,'p');text(0,1,1,' light');subplot(1,2,2);surf(x,y,z);axis equal;light('Posi',[1,0,1]);shading interp;hold on;plot3(1,0,1,'p');text(1,0,1,' light'); 5.4 图形的裁剪处理 例5-25 绘制三维曲面图,并进行插值着色处理,裁掉图中x和y都小于0部分。 程序如下:[x,y]=meshgrid(-5:0.1:5);z=cos(x).*cos(y).*exp(-sqrt(x.^2+y.^2)/4);surf(x,y,z);shading interp;pause %程序暂停 i=find(x<=0&y<=0);z1=z;z1(i)=NaN;surf(x,y,z1);shading interp;为了展示裁剪效果,第一个曲面绘制完成后暂停,然后显示裁剪后的曲面。 六。图像处理 与动画制作6.1 图像处理 1.imread和imwrite函数 imread和imwrite函数分别用于将图像文件 读入MATLAB工作空间,以及将图像数据和色图数据一起写入一定格式的图像文件。MATLAB支持多种图像文件格式,如.bmp、.jpg、.jpeg、.tif等。 2.image和imagesc函数 这两个函数用于图像显示。为了保证图像的显示效果,一般还应使用colormap函数设置图像色图。 例1-26 有一图像文件flower.jpg,在图形窗口显示该图像。 程序如下:[x,cmap]=imread('flower.jpg'); %读取图像的数据阵和色图阵 image(x);colormap(cmap);axis image off %保持宽高比并取消坐标轴 6.2 动画制作 MATLAB提供getframe、moviein和movie函数进行动画制作。 1.getframe函数 getframe函数可截取一幅画面信息(称为动画中的一帧),一幅画面信息形成一个很大的列向量。显然,保存 n幅图面就需一个大矩阵。 2.moviein函数 moviein(n)函数用来建立一个足够大的n列矩阵。该矩阵用来保存n幅画面的数据,以备播放。之所以要事先建立一个大矩阵,是为了提高程序运行 速度。 3.movie函数 movie(m,n)函数播放由矩阵m所定义的画面n次,缺省时播放一次。 例1-27 绘制了peaks函数曲面并且将它绕z轴旋转。 程序如下[X,Y,Z]=peaks(30); surf(X,Y,Z)axis([-3,3,-3,3,-10,10])axis off;shading interp;colormap(hot);m=moviein(20); %建立一个20列大矩阵 for i=1:20view(-37.5+24*(i-1),30) %改变视点 m(:,i)=getframe; %将图形保存到m矩阵 end movie(m,2); %播放画面2次
Ⅷ 谁有三角函数公式大全要带图的
倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin² α+cos² α=1 tan α *cot α=1
一个特殊公式
(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)
锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边
二倍角公式
正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(√3/2)^2] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)
n倍角公式
sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。 其中R=2^(n-1) 证明:当sin(na)=0时,sina=sin(π/n)或=sin(2π/n)或=sin(3π/n)或=……或=sin【(n-1)π/n】 这说明sin(na)=0与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】=0是同解方程。 所以sin(na)与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】成正比。 而(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ),所以 {sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1π/n】 与sina sin(a+π/n)……sin(a+(n-1)π/n)成正比(系数与n有关 ,但与a无关,记为Rn)。 然后考虑sin(2n a)的系数为R2n=R2*(Rn)^2=Rn*(R2)^n.易证R2=2,所以Rn= 2^(n-1)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
两角和公式
cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2
双曲函数
sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容
诱导公式
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]
其它公式
(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)
编辑本段内容规律
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在. 1、三角函数本质:
[1] 根据右图,有 sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。 A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) OA'=OA=OB=OD=1,D(1,0) ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) 单位圆定义 单位圆 六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是: 图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于 cos θ 和 sin θ。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。 两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)
Ⅸ 理科高中数学
知识模块 知识点 能力要求 难度 考试 题型 考点解析及预测
集合 集合的概念与元素特征 了解 ★ 选择题、填空题 "高考对集合的考查有两种主要形式:一是直接考查集合的概念;二是以集合为工具考查集合语言和集合思想的运用。从涉及的知识上讲,常与映射、函数、方程、不等式等知识相联系,小题目综合化是这部分内容的一种趋势。1集合中元素的三个性质(确定性、无序性、互异性)
2子集(空集的认识、子集的理解)
3交集、并集、补集的运算(大多数与不等式的解法、函数的定义域与值域的求解)"
子集、全集、 子集、全集 理解 ★★ 选择题、填空题
交集、并集、补集 交集、并集、补集的运算 理解 ★★ 选择题、填空题
函数的概念及其表示 函数三要素:定义域、值域、解析式 理解 ★★ 选择题、填空题 "函数是高中数学最重要的内容,是贯穿整个中学数学的一条主线,因而一直是高考的必考内容和热点内容.
(1)函数的概念及其性质(单调性、奇偶性、周期性、对称性)是高考考查的主要内容,函数的定义域、解析式、值域是高考考查重点,函数性质的综合考查在历年考试中久考不衰,应重点探究.
(2)指数函数、对数函数、幂函数是中学数学的重要函数模型,也是函数内容的主体部分,对于指数式和对数式的运算时有考查.
(3)函数这部分内容高考中分值一般为10~12分.
预计在2012年高考试题中,考查函数的应用主要有两种形式,一是以选择题、填空题的形式考查几种常见函数模型在实际问题中的应用以及函数零点、函数与方程的关系等,一般为容易题或中档以上题;二是以解答题的形式考查实际问题以及函数与其他知识,如与方程、不等式、数列、解析几何等的综合,综合性强,难度较大."
函数的基本性质 单调性、奇偶性、周期性、对称性 掌握 ★★★★ 选择题、填空题
指数函数 分数指数幂的概念,有理数指数幂的运算性质,指数函数的概念、图像、运算性质 理解 ★★★ 选择题、填空题、解答题
对数函数 对数的概念、性质,对数函数的性质、图像及运算性质 理解 ★★★ 选择题、填空题、解答题
幂函数 幂函数的概念、图像与性质 了解 ★★ 选择题、填空题
二次函数 二次函数的最值讨论,根分布 理解 ★★★ 选择题、填空题
函数图像及其变换 函数图像及其变换,抽象函数 理解 ★★ 选择题、填空题
函数与方程 二分法,零点定理 理解 ★★ 选择题、填空题、解答题
任意角和弧度制 任意角的概念,弧度的意义,能正确的进行弧度与角度的换算 了解 ★ 选择题、填空题 "高考中,三角函数主要考查学生的运算能力、灵活运用能力,在客观题中,突出考察基本公式所涉及的运算、三角函数的图像基本性质,尤其是对角的范围及角之间的特殊联系较为注重。三角函数部分,公式较多,易混淆,在运用过程中,要观察三角函数中函数名称的差异、角的差异、关系式的差异,确定三角函数变形化简方向。
近5年高考对于三角函数部分的考查主要有两种题型:1.选择或填空:大都以考察基本公式、基本性质、图像变换为主,解答题以基础题为主,中档题可能有所涉及,压轴题可能性不大。 2.解答题:(1)三角函数的运算;(2)三角函数的图像变换与函数的性质;(3)向量与三角的综合运用及解三角形。(4)与其它知识的结合,尤其是与解析几何的结合。
"
任意角的三角函数 任意角的正弦、余弦、正切的定义 掌握 ★★ 选择题、填空题
三角函数的基本关系、诱导公式 同角三角函数的基本关系式,正、余弦的诱导公式 理解 ★★ 选择题、填空题、解答题
三角函数的图像与性质 正弦函数、余弦函数图象和性质;周期函数 理解 ★★★ 选择题、填空题、解答题
函数y=Asin(ωx+φ)的图像 函数y=Asin(ωx+φ)的图像 掌握 ★★★ 选择题、填空题、解答题
两角和与差的正弦、余弦和正切公式 两角和与差的正弦、余弦、正切公式 掌握 ★★ 选择题、填空题、解答题
升降幂公式 二倍角的正弦、余弦、正切公式;能正确运用三角公式进行三角函数式的化简、求值和恒等式的证明 掌握 ★★ 选择题、填空题、解答题
正弦定理和余弦定理 利用正、余弦定理解三角形 掌握 ★★★ 选择题、填空题、解答题
解斜三角形的应用举例 正弦、余弦定理与三角函数的综合应用,正弦定理与三角形面积公式的综合应用 掌握 ★★★ 解答题
平面向量的基本概念 向量的概念,向量的几何表示 理解 ★ 选择题、填空题 "高考中,要求掌握向量的基本定理、向量的加减运算、向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义;掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。解答题中,突出考查基本公式所涉及的运算。平面向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。(1)平面向量的基本定理及其坐标表示;(2)平面向量的数量积、向量的模和夹角的坐标表示;(3)平面向量的应用(证平行、垂直;求夹角、距离;三角形的四心的向量表示)(4)与其它知识的结合,尤其是与三角函数、解析几何的结合。
有关向量概念和向量的基本定理、模和向量夹角的定义、夹角公式、向量的坐标运算的命题,主要以选择题或填空题为主,考查的难度属中档类型。以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。解答题以基础题为主,中档题可能有所涉及,压轴题可能性不大。
解答题主要在以下两种题目出现:
1.三角函数题目条件、结论以向量形式给出;
2.圆锥曲线题目条件、结论以向量形式给出。
"
平面向量的线性运算 向量加减法 掌握 ★★ 选择题、填空题、解答题
平面向量的基本定理及坐标运算 平面向量的正交分解及坐标表示,平面向量的坐标运算、共线的坐标表示 掌握 ★★ 选择题、填空题、解答题
平面向量的数量积 平面向量数量积的运算性质,平面向量数量积的坐标表示,向量的模和夹角的坐标表示 掌握 ★★ 选择题、填空题、解答题
平面向量的应用 证平行、垂直,与三角函数结合的运算,三角形的四心的向量表示 理解 ★★★ 选择题、填空题、解答题
数列的概念与简单表示法 数列的概念、通项公式的意义、递推公式 了解 ★ 选择题、填空题 "数列在整个中学数学教材中,处于一个知识汇合点的地位,很多知识都与数列有着密切关系。可以说,数列在各知识沟通方面发挥着重要作用。数列虽然在教学大纲中课时不是很多,但在高考中,数列内容却占有重要地位,分值约占总分的8%~11%。试题大致分两类,一类是数列基本知识的基本题。多采用选择题或填空题;另一类是中等以上难度的综合题。
1、从知识点看,近几年的高考试题中有关本章的试题,主要命题热点有
(1)关于等差、等比数列的概念、性质、通项公式、前n项和公式的应用是必考内容。
(2)从an到sn,从sn到an的关系。
(3)某些简单的递推式问题。
(4)应用前述公式解应用题。
(5)综合数学归纳法解决猜想问题或证明等式、不等式问题。
(6)数列与函数、三角、解析几何的综合题等。
2、从解题思想方法的规律看:主要有:
(1)方程思想的应用,利用公式列方程(组),例如:等差、等比数列中的“知三求三”问题。
(2)函数思想的应用。
(3)待定系数法、数学归纳法、构造法、分类讨论等方法的应用。
"
等差数列 等差数列及其通项公式的概念 掌握 ★★ 选择题、填空题、解答题
等差数列前n项和 前n项和公式 掌握 ★★ 选择题、填空题、解答题
等比数列 等比数列的概念 掌握 ★★ 选择题、填空题、解答题
等比数列前n项和 前n项和公式 掌握 ★★ 选择题、填空题、解答题
数列通项求法 常见的几种数列通项求法 掌握 ★★★ 选择题、填空题、解答题
数列前n项和求法 常见的几种数列前n项和求法 掌握 ★★★ 选择题、填空题、解答题
不等关系与不等式 不等式的定义、比较两个是数的大小、不等式的性质 了解 ★ 选择题、填空题 "从近几年的高考试题来看,对不等式重点考查的有四种题型:解不等式、证明不等式、线性规划问题、不等式的应用、不等式的综合性问题。这些不等式试题主要体现了等价转化、函数与方程、分类讨论等数学思想.近年来高考命题越来越关注开放性、探索性等创新型问题,尤其是与函数、导数、数列综合的不等式证明问题以及涉及不等式的应用题等。1.在选择题中会继续考查比较大小,线性规划问题,与函数、方程、三角等知识结合出题.线性规划问题仍为高考的重点与热点,属必考题,要关注目标函数的几何意义及参数问题。
2.在选择题与填空题中注意不等式的解法建立不等式求参数的取值范围,以及求最大值和最小值应用题.
3.解题中注意不等式与函数、方程、数列、应用题、解析几何的综合、突出渗透数学思想和方法.
"
一元二次不等式及其解法 一元二次不等式及其解法 掌握 ★★ 选择题、填空题、解答题
二元一次不等式组及线性规划 二元一次不等式的几何意义、二元一次不等式组及线性规划 掌握 ★★★ 选择题、填空题
基本不等式 基本不等式及其应用 运用 ★★★★★ 选择题、填空题、解答题
不等式恒成立、能成立、恰成立 不等式恒成立、能成立、恰成立 理解 ★★★★ 选择题、填空题、解答题
算法与程序框图 算法的含义、程序框图的三种基本逻辑结构 了解 ★ 选择题、填空题 高考中,主要考查程序框图及一些实际问题的流程图。框图知识仍为考查的热点问题,内容以程序框图为主。题型多以选择题和填空题为主,难度不大。
基本算法语句 基本算法语句 掌握 ★★ 选择题、填空题
算法案例 算法案例 了解 ★ 选择题、填空题
随机抽样 简单随机抽样、系统抽样、分层抽样 掌握 ★★ 选择题、填空题 从内容上看,以应用题为命题背景,考查分层抽样、系统抽样的有关计算,或三种抽样方法的区别,以及茎叶图、频率分布表、频率分布直方图的识图与运用。1.三种抽样方法,频率分布表,频率分布直方图和茎叶图的有关计算仍是考试的重点。2.文科出现在选择、填空、解答都有可能。理科主要出现在填空题中。3.主要是通过案例,体会运用统计方法,解决实际问题的思想和方法。
用样本估计总体 用样本的频率分布估计总体、用样本的数字特征估计总体的基本数字特征 了解 ★★ 选择题、填空题
变量间的相关关系 变量间的相关关系 了解 ★ 选择题、填空题
随机事件概率 随机事件发生的不确定性和频率的稳定性、概率的意义 了解 ★ 选择题、填空题、解答题 概率是高考的重点和必考内容,多以主观题的形式出现。理解随机事件的概率,会求等可能事件的概率,能用加法公式和乘法公式求互斥事件和相互独立事件同时发生的概率。注意几何概型部分包括长度型、面积型、体积型等类型。
古典概型 两个互斥事件的概率加法公式、古典概型的概念及其特点 掌握 ★★★ 选择题、填空题、解答题
几何概型 几何概型的概念及其特点 了解 ★★★ 选择题、填空题、解答题
空间几何体 柱、锥、台、球及其简单组合体的结构特征、三视图、直观图 了解 ★★ 选择题、填空题 "高考中,柱、锥、台、球的定义和相关性质是基础,以它们为载体考查线线、线面、面面间的关系是重点,异面直线所成角、线面角、二面角(三垂线定理、逆定理)也是重点考查内容。通过三视图考查简单几何体的体积或表面积,题型以选择题和填空题为主,题目较容易,同时也要注意作为解答题的背景出现(模拟题曾考过)。
直线、平面平行、垂直的判定和性质、线线角、线面角、二面角以及三垂线定理、逆定理仍为高考的重点和热点,题型以解答题的计算与证明题的形式出现,难度为中等或偏难。
"
空间几何体的三视图和直观图 选择题、填空题
空间几何体的表面积与体积 棱柱、棱锥、台、球的侧面展开图、表面积和体积的计算公式 了解 ★★ 选择题、填空题
空间点、直线、平面之间的位置关系 空间直线、平面位置关系、四个公理、一个定理 了解 ★★★ 选择题、填空题、解答题
直线、平面平行的判定及其性质 直线和平面的位置关系、直线与平面平行的判定定理和性质定理、两个平面平行的判定定理和性质定理 掌握 ★★★ 选择题、填空题、解答题
直线、平面垂直的判定及其性质 直线与平面垂直的判定定理和性质定理、两个平面垂直的判定定理和性质定理 掌握 ★★★ 选择题、填空题、解答题
空间角与距离 异面直线所成的角、二面角、直线与平面所成的角、异面直线间的距离、直线与平面间的距离、平面与平面间的距离 掌握 ★★★★ 选择题、填空题、解答题
直线的倾斜角和斜率 倾斜角和斜率、直线方程的点斜式、斜截式、截距式、两点式和一般式 掌握 "★★
" 选择题、填空题 "高考中,要求掌握直线方程的基本概念、倾斜角、斜率、两直线平行、垂直的判定、点到直线的距离;用待定系数法确定圆的标准方程及一般方程;给定直线、圆的方程,判断直线与圆、圆与圆的位置关系,会求圆的切线方程、公共弦方程及弦长等有关直线与圆的难问题;通过“数”和“形”的结合,充分利用圆的几何性质简化运算。(1)直线的方程;(2)点到直线的距离公式、两条平行线间的距离公式;(3)圆的方程;(4)直线与圆、圆与圆的位置关系(点、线、圆与圆的距离最值问题);(4)对称问题;(5)直线与圆锥曲线结合的问题。
直线和圆的基本概念、方程、几何性质,直线与圆、圆与圆的位置关系主要以填空题、选择题的形式考查,难度不大属中档题。直线与其他曲线的位置关系,主要考查数形结合思想及分析讨论、解决问题能力,综合性较强,难度也较大。
解答题主要在以下题目出现:直线与圆锥曲线结合的问题。
"
直线的方程 选择题、填空题、解答题
直线的交点坐标与距离公式 解方程组的方法求两条相交直线的交点坐标、两点间的距离公式、点到直线的距离公式、平行线间的距离 掌握 ★★ 选择题、填空题、解答题
圆的方程 圆的几何要素、标准方程和一般方程 掌握 ★★★ 选择题、填空题、解答题
直线与圆的位置关系 直线与圆的位置关系、圆的切线方程、公共弦方程、弦长 运用 ★★★★ 选择题、填空题
空间直角坐标系 空间直角坐标系 了解 ★★ 选择题、填空题、解答题 主要与空间向量联系
命题及其关系 四种命题及其相互关系 了解 ★ 选择题、填空题 对于逻辑的考查主要考查四种形式的命题和充要条件,特别是充要条件,已经在许多省市的试卷中单独出现。命题的形式:一是原命题与逆否命题的等价性(含最简单的反证法);二是充要条件的判定。在考查基础知识的同时,还考查命题转换、推理能力与分析问题的能力及一些数学思想方法的考查。在逻辑方面,高考重点考查充要条件的判定、全称量词和存在量词。
充分条件与必要条件 充分条件、必要条件及充要条件的意义 掌握 ★★★ 选择题、填空题
简单的逻辑联结词 逻辑连词“或、且、非”的含义 了解 ★★ 选择题、填空题
全称量词与存在量词 全称量词与存在量词的意义、含有量词命题的否定 掌握 ★★ 选择题、填空题
椭圆及其标准方程 椭圆及其标准方程,椭圆的简单几何性质,椭圆的参数方程 掌握 ★★★ 选择题、填空题、解答题 "本专题是高中数学的核心内容之一,在高考试题中一般有2题(1个选择题或1个填空题、1个解答题)共计18-19分左右。选择题和填空题考察以圆锥曲线(双曲线或抛物线综合)的基本概念和性质为主,难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,重点考查圆锥曲线中椭圆或抛物线的重要知识,着重考查直线与椭圆、直线与抛物线的位置关系,往往结合平面向量进行求解,在复习中应充分重视。一、圆锥曲线中的离心率、焦点三角形、通径等知识点是填空题、选择题中的高频试题,其难度不高,方法灵活。对圆锥曲线的定义的考查也比较多。在双曲线的几何性质中,渐近线是一种独特的性质,仍是考查的重点内容。
二、直线与圆锥曲线(椭圆)位置关系容易和平面向量、数列、函数、不等式相结合,设计存在性问题、对称问题、定值问题、定点问题、最值问题(参数取值范围问题)等。这些试题抽象程度高,运算难度大,还可考查学科内知识综合运用能力,是数学压轴试题的首选之一。
"
椭圆的简单几何性质
双曲线及其标准方程与简单几何性质 双曲线及其标准方程,双曲线的简单几何性质,双曲线的参数方程 掌握 ★★★ 选择题、填空题、解答题
双曲线的简单几何性质
抛物线及其标准方程 抛物线线及其标准方程,抛物线的简单几何性质 掌握 ★★★ 选择题、填空题、解答题
抛物线的简单几何性质
直线与圆锥曲线(综合问题) 位置,最值,范围,轨迹问题 运用 ★★★★★ 解答题
空间向量及其运算 空间向量的概念、向量的基本定理、空间向量的线性运算及其坐标表示 掌握 ★★ 解答题 高考中,解答与空间角有关的问题通常既可以用传统法,又可用向量法。在新课程标准下,立体几何的基本理论知识要求有所降低,因此应用空间向量这一工具解题更为重要,特别是利用给出空间图形的特殊性,构建适当的空间直角坐标系解决问题更应熟练掌握,并能灵活运用。空间角是立体几何中一个重要概念,它是空间图形的一个突出的量化指标,是空间图形位置关系的具体体现。立体几何通常考一道综合题,居于6个解答题的中间位置,难度不是很大。用向量法来解可以降低难度,并且多数情况下传统法、向量法都可以解题时,有时还可以用向量的坐标运算解题。利用空间向量的数量积及坐标运算来解决立体几何问题仍是高考的重点。
空间几何中的向量法 空间向量的坐标运算、两点距离公式、夹角公式 运用 ★★★★ 解答题
导数概念及其几何意义 导数的概念、几何意义 理解 ★★ 选择题、填空题、解答题 "高考对导数的考查形式多样,难易均有,可以在选择题和填空题中出现,主要以导数的运算、导数的几何意义、导数的应用为主(研究单调性、极值和最值等);也更容易在解答题中出现,有时候作为压轴题,主要考查导数的综合应用,往往与函数、方程、不等式、数列、解析几何等联系在一起,分值为12~16分.
"
导数的计算 初等函数的导数公式、和差积商的求导法则、复合函数的求导法则 掌握 ★★
导数在研究函数中的应用 利用导数研究函数的单调性,极大、极小值,最大、最小值 运用 ★★★★ 解答题
定积分的概念与微积分基本定理 定积分的概念、微积分基本定理、牛-莱公式及其应用 掌握 ★★ 选择题、填空题 微积分是新课标新增内容,故高考对微积分的考查会注重基础,重在考查基本概念和方法,所以一般以选择题和填空题的形式出现,考查内容以定积分的计算和面积的计算为主。
合情推理与演绎推理 合情推理、演绎推理、合情推理与演绎推理之间的联系和区别 了解 ★ 选择题、填空题 "1.作为新课标内容,主要考查类比推理和归纳推理.
2.题目要出现在填空题,难度中档.
1.仍将考查归纳推理与演绎推理,主要应先由已知条件归纳出一个结论,并加以证明或以推理作为题目的已知条件给出猜测的结论,并要求考生会应用或加以证明.
2.从题型上看,主要以填空题形式出现.
"
直接证明与间接证明 直接证明的两种基本方法:综合法和分析法、间接证明的基本方法:反证法 了解 ★ 选择题、填空题
数学归纳法 数学归纳法及其应用 掌握 ★★★★ 解答题
数系的扩充与复数的引入 数系的扩充、复数的概念 理解 ★ 选择题、填空题 复数的运算是本专题的重点,也是每年必考的知识之一。主要考查复数代数形式及运算,题型为选择题,属容易的题。
复数的代数形式的代数运算 复数的加法减法、复数的乘法除法 掌握 ★★ 选择题、填空题
分类计数加法原理与分步计数乘法原理 分类计数加法原理与分步计数乘法原理 理解 ★★ 选择题、填空题、解答题 排列与组合,是当今发展迅速的组合数学的最初步的知识。由于其思想方法较为独特灵活,是发展学生抽象能力和逻辑思维能力的好素材。它多以客观题的形式出现,考查其基本知识的应用。从近几年的高考试卷来看,“排列、组合、二项式定理”的内容在高考有所改动,试题都具有一定的灵活性、综合性、实用性。主重分类讨论的思想的建立。从考试题型和难易度来看:属传统知识的排列、组合应用问题每年都有1~2小题,难度中档以上(如2010年理科的“染色问题”);二项式定理基本上是一小题,着重考查二项式定理展开式的通项公式或系数性质,试题难度易、中档。
排列与组合 排列、组合概念、排列数公式、组合数公式、组合数的两个性质 掌握 ★★★★ 选择题、填空题、解答题
二项式定理 二项式定理以及二项展开式的性质、通项公式 掌握 ★★★ 选择题、填空题
离散型随机变量及其分布列 离散型随机变量及其分布列 掌握 ★★★ 解答题 "1.从内容上看,求简单随机变量的分布列,以及由此分布列求随机变量的数学期望与方差,特别是二项分布,这部分内容综合性强,涉及排列、组合、二项式定理和概率。
2.从考查形式上看,主要为解答题,难度中档。
3.在复习时牢固掌握求随机变量分布列的步骤,准备运用期望与方差的公式,并能逆用和变用。
4.以应用题为背景命题,预计是2012年高考的一个热点,今后是高考的考试热点。
5.从题型来看,随机变量在山东卷更多的是解答题,难度中档。"
二项分布及其应用 条件概率、事件的相互独立性、二项分布及其应用 了解 ★★★ 解答题
离散型随机变量的均值与方差 离散型随机变量的均值与方差、 掌握 ★★★ 解答题
正态分布 正态分布曲线的特点、曲线所表示的意义 了解 ★★ 填空题
回归分析的基本思想及其应用 回归分析的基本思想、方法及其应用 了解 ★ 填空题 "
考纲里只是作为了解知识点,近几年没有考过。"
独立性检验的基本思想及其应用 独立性检验的基本思想及其应用 了解 ★ 填空题
相似三角形判定及其性质 平行线等分线段定理及推论、平行线分线段成比例定理及推论、相似三角形的概念、相似三角形的性质定理及判定 掌握 ★★ 填空题 高考中,主要考查定理的应用与简单的计算。本专题属于高考选考内容,题型上来看主要是填空题,难度不大。
直线与圆的位置关系 直线与圆的位置关系、圆切线的性质定理及判定、圆周角、圆周角定理及推论、弦切角、弦切角定理及推论、圆的切线,内接四边形,比例线段 掌握 ★★ 填空题
圆锥曲线性质的探究 圆锥曲线性质的探究 了解 ★ 选择题、解答题
极坐标系与简单的极坐标方程 极坐标系、极坐标方程 了解 ★★ 填空题 "1.理解极坐标系与直角坐标系的转化关系
2.掌握常见曲线的参数方程(如直线、圆、椭圆等)
预计2012年高考中:
1. 本章内容仍是选考内容,难度不大。
2. 从能力要求上看,要求学生具备一定的读图识图能力和转化的思想。
"
直线与曲线的参数方程 参数方程、直线与曲线的参数方程 掌握 ★★★ 填空题
Ⅹ 一次函数图像定律大全
函数性质
1.在正比例函数时,x与y的商一定。在反比例函数时,x与y的积一定。
在y=kx+b(k,b为常数,k≠0)中,当x增大m倍时,函数值y则增大m倍,反之,当x减少m倍时,函数值y则减少m倍。
2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。
3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。
4.在两个一次函数表达式中:
当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。
5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
当k1,k2正负相同时,二次函数开口向上;
当k1,k2正负相反时,二次函数开口向下。
二次函数与y轴交点为(0,b2b1)。
1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。
k,b决定函数图像的位置:
y=kx时,y与x成正比例:
当k>0时,直线必通过第一、三象限,y随x的增大而增大;
当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:
当k>0,b>0,这时此函数的图象经过第一、二、三象限;
当k>0,b<0,这时此函数的图象经过第一、三、四象限;
当k<0,b>0,这时此函数的图象经过第一、二、四象限;
当k<0,b<0,这时此函数的图象经过第二、三、四象限。
当b>0时,直线必通过第一、三象限;
当b<0时,直线必通过第二、四象限。
特别地,当b=0时,直线经过原点O(0,0)。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。
6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比性函数,渐近线为x=-b/a,y=c/a。
特殊位置关系当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)。
一次函数的解析式①点斜式:y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点);
②两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点),
③截距式:x/a+y/b=1(a、b分别为直线在x、y轴上的截距)。
解析式表达的局限性:
①所需条件较多(2个点,因为使用待定系数法需要列一个二元一次方程组);
②、③不能表达没有斜率的直线(即垂直于x轴的直线;注意“没有斜率的直线平行于y轴”表述不准,因为x=0与y轴重合);
④不能表达平行于坐标轴的直线和过原点的直线