❶ 机器视觉都有哪些品牌,性价比如何
1、凌华科技
凌华科技(中国)有限公司,是台湾凌华科技集团在中国大陆设立的分公司。是一家致力于研究、制造基于PC技术的专业计算机、自动化数据量测系统及工业过程自动化控制设备的专业厂商。
几年来,凌华科技以专业的技术为各界的用户提供了高质量、经济化的量测与自动化产品及解决方案。
凌华科技在图像采集卡方面具有强大的科研实力,自行研发制造的产品被广泛应用在SCADA系统、工业、测量、智能机器,智能交通以及现代通讯系统、医疗设备、航天、军工等领域。
2、大恒图像
中国大恒(集团)有限公司北京图像视觉技术分公司简称为大恒图像,成立于1991年,总部在北京,是中国科学院下属企业。大恒图像的技术骨干主要来自中国科学院各研究单位,公司的产品和技术基础来源于中国科学院多年的技术积累,是将高新技术成果转化为产品的高科技企业。
大恒图像自成立之日起,一直坚持走以技术开发为主的发展道路,一直致力于图像视觉领域的研究开发,建立了技工贸一体化的结构,连续十五年被中关村科技园区认定为高新技术企业。
在国内,大恒图像是首屈一指的专业视频图像处理设备供应商,同时也是着名的图像应用系统集成商和解决方案提供商。
3、视觉龙
深圳市视觉龙科技有限公司是一家由归国留学人员创办的高科技企业,公司成立于2002年9月,在深圳、常州和嘉兴分别设有公司。成立以来,公司一直致力于机器视觉产品的应用开发、嵌入式机器视觉系统的研发、生产以及销售。
视觉龙专业涵盖非接触式测量(含机器视觉、位移测量等)、自动化控制、精密机械、电子、工控软件等诸多重要领域。可以提供机器视觉单元、镜头、光源等硬件及软件方面的支持和配合。
应用前景:在包括汽车制造、制药、电子、包装、印刷、烟草、日化、建材、制币、制卡等在内的几乎所有的现代工业自动化生产中,涉及到各种各样的检验生产监 视和零件识别应用,如汽车零件批量加工,端子尺寸检测,SMT装配,IC的字符识别等等,通常这种带有高度重复性和智能性的工作只能用人的肉眼来完成,但 有些时候,如微小的尺寸要做到精确快速测量,形状匹配,颜色识别等,人们根本无法用肉眼连续稳定地进行,其他物理传感器也难以有用武之地。视觉龙科技作为 一间专门为高要求用户提供图像处理和机器视觉软件及全面解决方案的公司,一直致力于机器视觉自动化的推广,在业内已具有骄人的业绩和口碑,为推动以上工业 发展做出了巨大的努力。
4、凌云光子
凌云光子技术集团是致力于光通信(OpticalCommunication)、CCD&CMOS数字成像技术和机器视觉领域(ImagingTechnology&MachineVision)的专业技术集团公司。
集团总部位于北京,下设北京凌云光视数字图像技术有限公司、北京凌云光子技术有限公司,上海凌云天博光电技术有限公司和香港分公司,并在上海、深圳两地设 有办事处。公司现有博士11名,硕士120多名,其中包括多名在海外留学多年的光通信专家和国内图像与机器视觉领域的知名学者。目前已成长为拥有580多 名员工、从事光通信和图像领域的市场营销与技术开发的高科技专业技术公司。是国内最早涉足光纤通信器件及光纤有线电视领域的高科技企业之一。
公司为Bookham、Fujikura、U2T、TeraXion、VPIsystems、Avensys、EXFO等四十多家世界着名的专业技术公司 在中国做产品推广、应用技术支持、市场拓展和渠道建设等工作,公司专注于光通信EDFA、40Gb/sDWDM光传输、100Gb/sDWDM光传输、 ROADM、偏振、光纤激光器、FBG传感、光接入网传输等多个应用领域,为广大用户提供从软件模拟、各种关键元器件,到测试仪表在内的整套产品解决方 案,且逐渐开始在光通信领域开展自主研发及生产。
5、康视达
康视达自动化科技有限公司是一家专业从事机器视觉光源、机器视觉系统集成、研发和服务的高新科技企业。公司立足于机器视觉和工业自动化领域,专注于机器视觉和运动控制的完美结合,全力打造视觉高端产品。
康视达研发LED机器视觉光源,形成环形光源、条形光源、线扫描光源、面光源、圆顶无影光源、平面无影光源、同轴光源、点光源、AOI设备专用光源、锡膏印刷机专用光源等众多系列,拥有多项专利技术。机器视觉光源是康视达公司的核心产品。
康视达代理国内外知名品牌的工业产品,包括:Cognex、NI、Panasonic等智能相机,SENTECH、Teli、Hitachi、 ImagingSource工业相机,Computar、VST、Navita、Myutron工业镜头,以及NI图像采集卡,MCC数据采集 卡,HALCON图像处理软件等。
6、三姆森光电科技
东莞三姆森光电科技有限公司成立于2005年,是专门研究图像处理及自动化运用的高科技企业,从事机器视觉检测,集自动化控制系统设计、开发、销售的高科 技公司。主要业务有:自动化系统,连接器检测,CCD平整度检测,机器视觉系统,包装检测系统,自动化在线检测,尺寸检测,外观检测,视觉软件开发,视觉 配件。
公司有三大视觉系统,1、PC视觉系统,它的主要特点是:可以根据客户的要求“量身定做”,性价比非常高,软件操作非常简便,功能强大,我们公司在电子行 业应用的非常广泛,尺寸测量,定位,字符识别,外观等等都可以检测。2、和日本合作开发的专门用于外观检测的SA外观检测系统,专门针对各种外观缺陷设计 开发的一款系统,一台处理器最多可以连接四个相机,因采用了独立的矢量软件算法,在检测外观缺陷的项目上,有非常大的优势。3、代理美国COGNEX的智 能视觉系统,主要应用在一些高速高精度的检测项目上,安装应用都比较简单。
7、OPT
OPT是奥普特自动化科技有限公司的简称,该公司主要从事机器视觉产品的研发生产销售,目前是中国机器视觉光源制造厂商。为客户提供视觉定位、光学检测、 图像分析、图像测量等方面的系统开发与集成解决方案。OPT销售及服务网络覆盖全球20多个国家和地区,拥有30多家授权代理商。
公司目前主要光源产品有环形光源、同轴光源、背光源、条形光源、组合条形光源、点光源、球积分光源、线形光源、AOI检测专用光源、SMT行业对位光源十大系列。配套有数字式光源控制器、模拟式光源控制器、增亮模块、数字增亮一体控制器、模拟增亮一体控制器。
8、凯瑞斯
东莞凯瑞斯自动化科技有限公司位于东莞市莞城科技园,注册资金100万,是一家由留学回国人员创办的高新科技企业,依托华南理工大学、华中科技大学、成都 电子科技大学等国内知名大学,成功聚集了一批高端留学人员和高级技术人才,立足于机器视觉和工业自动化领域,专业从事机器视觉光源、机器视觉系统及工业机 器人的研发和技术服务,通过机器视觉和运动控制的完美结合,全力打造视觉高端产品。
❷ 三维机器视觉有哪些应用案例
机器视觉是通过计算机来模拟人类视觉功能,以让机器获得相关视觉信息。机器视觉在工业上应用领域广阔,核心功能包括:测量、检测、识别、定位等。
机器视觉中缺陷检测功能,是机器视觉应用得最多的功能之一,主要检测产品表面。在现代工业自动化生产中,连续大批量生产容易出现次品。这是大多数企业目前正面临的瓶颈,并且大批量地剔除次品成本会高很多,因此及时检测及次品剔除对质量控制和成本控制是非常重要的,也是制造业进一步升级的重要基石。
三维机器视觉设备精度能达亚微米级,三维数据采集帧率高达300帧,具有高精度、大景深、高稳定性的优势,让机器人在工业应用领域上更加智能、可靠,适用于更多复杂的应用场景。
以下是三维机器视觉设备的一些应用案例:
一、检测
得益于双目仿真人眼设计,3D机器视觉设备可以轻松完成空间层面的检测,即对于复杂产品尺寸、缺陷的精准测量,不仅可以完全替代人工,而且更加准确、高效。
二、物料抓取
3D机器视觉系统,可以识别杂乱无序的目标和对象,准确获取工件的位置信息,实现机器人或机械手臂精准定位、快速抓取。该系统可广泛应用于各类生产线上物料搬运、装配、上架、下架等。
三、运动抓取
3D机器视觉系统采用先进的3D视觉定位技术,能够根据工件的三维特征信息,在高度自动化的制造生产中,完成对轨道上运动目标的定位预判和准确抓取,整个过程无需目标停止。
三维机器视觉的产品优势 :
1. 自主研发高速高清三维机器视觉,软硬件可定制;
2. 稳定性高,对环境光、反光物体抗干扰性强;
3. 软件接口丰富、操作简单、学习成本低;
4.兼容多种主流工业机器人通信协议。
❸ 如何设计机器视觉系统框架
图像采集设备机器视觉教学实验平台是专门针对大学和研究机构开展机器视觉教学和研究的机器视觉教学实验平台,提供包括图像测量、检测、定位、跟踪识别等多个图像处理库函数,功能强大,可覆盖工业生产、机器视觉、智能交通、航空航天等众多图像处理应用领域。 机器视觉图像处理教学实验开发平台可利用其提供的大量图像处理和机器视觉算法进行二次开发,解决现代工业产品生产过程中涉及的各种各样视觉问题。实验平台结构开放,提供扩展接口,也可添加自己的图像处理优异算法。 提供多种图像处理实验,如图象分割、图象融合、机器学习、模式识别、图象测量、图象处理、模式识别和人工智能、三维测量、双目立体视觉等实验,可以培养学生对机器视觉产品知识的深入理解和掌握,锻炼学生的研究能力,创新思维以及独立解决技术难题的能力。 作为一套完整的机器视觉教学实验开发平台,使用者可利用其配套的工业相机、LED光源、工业镜头、支架、算法软件等搭建自己的视觉处理系统原型,了解图像采集设备等配件的应用和选型,轻松设计、印证和评估自己的视觉系统,特别适合于大学和研究机构开展机器视觉教学和科研工作。
❹ 如何制作机器视觉用LED光源
自己做往往均匀性得不到保证,影响图像质量进而有可能影响分析。毕竟光源的亮度和均匀性是非常重要的指标。
并且如果需要用高亮线光源的话普通LED是达不到高亮效果的。
如果你是北京的,可以来我公司免费做实验,我有进口的高亮线光源可以借你用。
北京嘉恒中自图像技术有限公司 在中科院自动化研究所内
❺ 机器视觉图像处理本质
机器视觉图像处理本质就是把一种矩阵式点存储方式的图像,通常由统计学等方法进行转换,获取可用于计算机处理的特征信息。
❻ 机器视觉行业如何设计机器视觉系统框架
如何设计机器视觉系统框架 --- 创科黎友在决定一个机器视觉系统的需求及应用时,很多因素需要考虑。机器视觉(或称为自动可视检测系统)一般包含了大量部件,这些部件直接影响系统的性能。为了获得这些子系统的优越性能,并无缝将他们接合在你的生产线上,最好花一些时间来学习视觉系统的组成、应用、以及正确的规划的重要性。 机器视觉的应用在对精度和可靠性都很高的重复性检测任务中,机器视觉广泛应用在这些生产流程中。一些常见的任务:在食物包装中检测数据代码;自动检测部件用于正确的安装;为机器人的捡起(pick)和放置(place)动作提供向导;在制药中效验药品的颜色;读取部件的条形码、以及在产品上的标识;还有更多更多。基于PC的机器视觉系统的基本组成 由于机器视觉应用非常广泛,在不同的系统里使用不同的部件,但是,我们可以将这些部件分成如下几类(见图1)。图1 通常的机器视觉系统的主要组成(附件1) 1. 摄像头和光学部件 –这一类通常含有一个或多个摄像头和镜头(光学部件),用于拍摄被检测的物体。根据应用,摄像头可以基于如下标准,黑白RS-170/CCIR、复**色(Y/C),RGB彩色,非标准黑白(可变扫描),步进扫描(progressive-scan)或线扫描。 2. 灯光 –灯光用于照亮部件,以便从摄像头中拍摄到更好的图像,灯光系统可以在不同形状、尺寸和亮度。一般的灯光形式是高频荧光灯、LED、白炽灯和石英卤(quartz-halogen)光纤。 3. 部件传感器 –通常以光栅或传感器的形式出现。当这个传感器感知到部件靠近,它会给出一个触发信号。当部件处于正确位置时,这个传感器告诉机器视觉系统去采集图像。 4. 图像采集卡 –也称为视频抓取卡,这个部件通常是一张插在PC上的卡。这张采集卡的作用将摄像头与PC连接起来。它从摄像头中获得数据(模拟信号或数字信号),然后转换成PC能处理的信息。它同时可以提供控制摄像头参数(例如触发、曝光时间、快门速度等等)的信号。图像采集卡形式很多,支持不同类型的摄像头,不同的计算机总线。 5. PC平台 –计算机是机器视觉的关键组成部分。应用在检测方面,通常使用Pentium III或更高的CPU。一般来讲,计算机的速度越快,视觉系统处理每一张图片的时间就越短。由于在制造现场中,经常有振动、灰尘、热辐射等等,所以一般需要工业级的计算机。 6. 检测软件 –机器视觉软件用于创建和执行程序、处理采集回来的图像数据、以及作出“通过/失败(PASS/FAIL)”决定。机器视觉有多种形式(C语言库、 ActiveX控件、点击编程环境等等),可以是单一功能(例如设计只用来检测LCD或BGA、对齐任务等等),也可以是多功能(例如设计一个套件,包含计量、条形码阅读、机器人导航、现场验证等等)。 7. 数字I/O和网络连接 –一旦系统完成这个检测部分,这部分必须能与外界通信,例如需要控制生产流程、将“通过/失败(PASS/FAIL)”的信息送给数据库。通常,使用一张数字I/O板卡和(或)一张网卡来实现机器视觉系统与外界系统和数据库的通信。 配置一个基于PC的机器视觉系统认真的计划和注意细节能帮助你确保你的检测系统符合你的应用需求。如下是你必需考虑的几点: 确定你的目标 –这可能是最重要的一步 枣决定在这个检测任务中你需要实现什么,检测任务通常分为如下几类: 1. 测量或计量 2. 读取字符或编码(条形码)信息。 3. 检测物体的状态 4. 认知和识别特殊的特性枣模式识别 5. 将物体与模板进行对比或匹配 6. 为机器或机器人导航检测流程可以包含只有一个操作或包含多个与检测任务相关的任务。为了确认你的任务,首先你应该明确为了最大限度检测部件你需要做的测试,也就是你能考虑到会出现的缺陷。为了明确什么哪个才是最重要的,最好做一张评估表,列出“必须做”和“可以做”的测试。一旦主要的对测试标准满意,随后可以将更多的测试加进去来改善检测过程,一定要记住,添加测试的同时也会增加检测的时间。确定你需要的速度 –系统检测每一个部件需要多少时间?这个不只是由PC的速度决定,还受生产流水线速度的影响。很多机器视觉包含了时钟/计时器,所以检测操作的每一步所需要的时间都可以准确测量,从这些数据,我们就可以修改我们的程序以满足时间上的要求。通常,一个基于PC的机器视觉系统每一秒可以检测20-25个部件,与检测部件的多少和处理程序以及计算机的速度有密切关系。聪明地选择你的硬件 –一套机器视觉系统的性能与它的部件密切相关。在选择的过程中,有很多捷径枣特别在光学成像上枣可能很大程度降低系统的效率。如下是在选择部件时你必须紧记的几个基本原则。 1. 摄像头摄像头的选择与应用的需求直接相关,通常考虑三点:a)黑白还是彩色;b)部件/目标的运动;c)图像分辨率。在检测应用中大部分使用黑白摄像头,因为黑白图像能提供90%可视数据,并且比彩色便宜。彩色摄像头主要用于一些需要分析彩色图像的场合里。根据部件在检测时是否移动,决定我们选择标准隔行扫描摄像头还是逐行扫描摄像头。另外,图像的分辨率必须足够高,以提供检测任务需要的足够的数据。最后,摄像头必须质量好和可以避免工业现场中的振动、灰尘和热的影响。 2. 光学部件和照明这个至关重要的因素往往被人所忽略。当你使用一个很差的光学部件或照明,就算你使用最好的机器视觉系统,它表现出的性能甚至比不上一个配上良好光学部件和适当照明的低能力系统。光学部件的目标是产生最好和最大可用面积的图像,并且提供最好的图像分辨率。照明的目标是照亮需要测量或检测的部分的关键特征。通常,照明系统的设计由如下因素决定:颜色、纹理、尺寸、外形、反射率等等。 3. 图像采集卡虽然图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。使用模拟输入的图像采集卡,目标是尽量不变地将摄像头采集的图像转换为数字数据。使用不正确的图像采集卡可能得到错误的数据。工业用的图像采集卡通常用于检测任务,多媒体采集卡由于它通过自动增益控制、边沿增强和颜色增强电路来更改图像数据,所以不用在这个领域里。使用数字输入的图像采集卡的目标是将摄像头输出的数字图像数据转换并输送到PC中作处理。考虑各种变化:人类的眼睛和大脑可以在不同的条件下识别目标,但是机器视觉系统就不是这样多才多艺了,它只能按程序编写的任务来工作。了解你的系统能看到什么和不能看到什么能帮助你避免失败(例如将好的部件认为是坏的)或其它检测错误。一般要考虑的包括部件颜色、周围光线、焦点、部件的位置和方向和背景颜色的大变化。正确选择软件:机器视觉软件是检测系统中的智能部分,也是最核心的部分。软件的选择决定了你编写调试检测程序的时间、检测操作的性能等等。图2 DTVF是一个多功能、图形化编程的机器视觉软件(附件2)机器视觉提供了图形化编程界面 (通常称为“Point & Click”) 通常比其他编程语言(例如Visual C++)容易,但是在你需要一些特殊的特征或功能时有一定的局限性。基于代码的软件包,尽管非常困难和需要编码经验,但在编写复杂的特殊应用检测算法具备更大的灵活性。一些机器视觉软件同时提供了图形化和基于代码的编程环境,提供两方面最好的特征,提供了很多灵活性,满足不同的应用需求。通信和记录数据:机器视觉系统的总的目标是通过区分好和坏的部件来实现质量检测。为了实现这一功能,这个系统需要与生产流水线通信,这样才可以在发现坏的部件是做某种动作。通常这些动作是通过数字I/O板,这些板与制造流水线中的PLC相连,这样坏的部件就可以跟好的部件分离。例外,机器视觉系统可以与网络连接,这样就可以将数据传送给数据库,用于记录数据以及让质量控制员分析为什么会出现废品。在这一步认真考虑将有助于将机器视觉系统无缝与生产流水线结合起来。需要考虑的问题是: 1. 使用了什么类型的PLC,它的接口如何? 2. 需要什么类型的信号? 3. 现在使用或必须使用什么类型的网络? 4. 在网络上传送的文件格式是什么?通常使用RS-232端口与数据库通信,来实现对数据的纪录。为以后做准备:当你为机器视觉系统选择部件时,时刻记住未来的生产所需和有可能发生的变动。这些将直接影响你的机器视觉软硬件是否容易更改来满足以后新的任务。提前的准备将不仅仅节约你的时间,而且通过在将来重用现有的检测任务可以降低整个系统的价格。机器视觉系统的性能由最差的部分决定(就像一个木桶的容量由最短的一个木块决定),精度则由它能获取的信息决定。花时间和精力合理配置系统就可以建造一个零故障和有弹性的视觉检测系统。
❼ 学机器视觉技术能做什么样的工作
要想学好机器视觉,需要对机器视觉的知识体系有所了解。下面我们就来分享一下各个部分需要掌握的知识点。
图像采集:需要对镜头、光源、相机(CCD)的选型有所了解,有经验的工程师说打光是图像采集的关键。图像采集是对我们后续工作的支撑,采集不到好的图像,对图像处理就会难上好几倍甚至几百倍。
图像处理:图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。需要熟知对图像处理的原理以及方式方法。其他的通用的滤波、连通域、腐蚀膨胀等也都需要了解一下。
❽ 什么是机器视觉
机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分 CMOS 和 CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。
正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。
详细应用案例:http://www.gkcity.com/n-i-52914-c-Case.htm
❾ 机器视觉的机械部分
机器视觉应该是属于传感检测这一学科分支,和其他传感器不同的是它在后续处理过程中使用使用二维信号进行处理。
在工程应用中,机器视觉都是需要机械部分作为支撑。与机器视觉相关的机械部分相关的设计主要指摄像头的安装支撑部分、云台运动部分和被摄对象以及周围环境。据我所知,机器视觉要注意机械部分对光源的影响和对摄像头的保护,其他情况应该和平常的机械设计没有太大区别。
需要补充的是,工业上用的摄像头分为面阵摄像头和线阵摄像头,线阵CCD常用于匀速移动的对象拍摄,其他场合一般采用面阵CCD。反过来说,如果你采用线阵CCD,就要注意被拍摄对象的运动速度的稳定性(运动规律的稳定性),然后便于利用数学算法重构图像。
❿ 自动化机器视觉
国外的根据精度和速度要求不一样,价格差别会很大。最低的也在10万以上吧。可以试着联系一下国产的,目前做的也挺好了,维视图像有个易菲特公司,是专门做视觉检测集成的,最低3万一套。