当前位置:首页 » 高清图片 » 图片数据有什么研究应用
扩展阅读
图片里找东西的软件 2024-11-17 23:14:54
游戏建筑场景图片素材 2024-11-17 23:14:44
宝马汽车图片大全 2024-11-17 23:10:16

图片数据有什么研究应用

发布时间: 2022-06-05 15:04:15

① 图片的应用形式有哪些

1、BMP格式

位图(外语简称:BMP、外语全称:Bitmap),它是Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。随着Windows操作系统的流行与丰富的Windows应用程序的开发,BMP位图格式理所当然地被广泛应用。这种格式的特点是包含的图像信息较丰富,几乎不进行压缩,但由此导致了它与生俱来的缺点——占用磁盘空间过大,所以,BMP在单机上比较流行。

2、GIF格式

图形交换格式(外语简称:GIF、外语全称:Graphics Interchange Format),美国一家着名的在线信息服务机构CompuServe针对当时网络传输带宽的限制,开发出了这种GIF图像格式。

GIF格式的特点是压缩比高,磁盘空间占用较少,所以这种图像格式迅速得到了广泛的应用。最初的GIF只是简单地用来存储单幅静止图像(称为GIF87a),后来随着技术发展,可以同时存储若干幅静止图像进而形成连续的动画,使之成为当时支持2D动画为数不多的格式之一(称为GIF89a)。

3、JPEG格式

JPEG也是最常见的一种图像格式,它是由联合照片专家组(外语全称:Joint Photographic Experts Group)开发并以命名为“ISO 10918-1”,JPEG仅仅是一种俗称而已。JPEG文件的扩展名为.jpg或.jpeg,因其压缩技术十分先进,它用有损压缩方式去除冗余的图像和彩色数据,获取得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可以用最少的磁盘空间得到较好的图像质量。

4、JPEG2000格式

JPEG 2000同样是由JPEG 组织负责制定的,它有一个正式名称叫做"ISO 15444",与JPEG相比,它具备更高压缩率以及更多新功能的新一代静态影像压缩技术。

JPEG2000 作为JPEG的升级版,其压缩率比JPEG高约30%左右。

与JPEG不同的是,JPEG2000 同时支持有损和无损压缩,而 JPEG 只能支持有损压缩。

5、TIFF格式

标签图像文件格式(外语简称TIFF、外语全称:TagImage FileFormat)是Mac中广泛使用的图像格式,它由Als和微软联合开发,最初是出于跨平台存储扫描图像的需要而设计的。它的特点是图像格式复杂、存贮信息多。正因为它存储的图像细微层次的信息非常多,图像的质量也得以提高,故而非常有利于原稿的复制。

6、PSD格式

这是着名的Adobe公司的图像处理软件Photoshop的专用格式PhotoshopDocument(PSD)。PSD其实是Photoshop进行平面设计的一张"草稿图",它里面包含有各种图层、通道、遮罩等多种设计的样稿,以便于下次打开文件时可以修改上一次的设计。在Photoshop所支持的各种图像格式中,PSD的存取速度比其它格式快很多,功能也很强大。由于Photoshop越来越被广泛地应用,所以我们有理由相信,这种格式也会逐步流行起来。

7、PNG格式

便携式网络图形(外语简称PNG、外语全称:Portable Network Graphics)是一种新兴的网络图像格式。在1994年底,由于Unysis公司宣布GIF拥有专利的压缩方法,要求开发GIF软件的作者须缴交一定费用,由此促使免费的png图像格式的诞生。PNG一开始便结合GIF及JPG两家之长,打算一举取代这两种格式。

8、SWF格式

利用Flash我们可以制作出一种后缀名为SWF(Shockwave Format)的动画,这种格式的动画图像能够用比较小的体积来表现丰富的多媒体形式。在图像的传输方面,不必等到文件全部下载就能观看,而是可以边下载边看,因此特别适合网络传输,特别是在传输速率不佳的情况下,也能取得较好的效果。

9、SVG格式

可缩放矢量图形(外语简称SVG、外语全称:Scalable Vector Graphics)可以算是目前最最火热的图像文件格式了。它是基于XML(标准通用标记语言的子集),由万维网联盟进行开发的。严格来说应该是一种开放标准的矢量图形语言,可让你设计激动人心的、高分辨率的Web图形页面。用户可以直接用代码来描绘图像,可以用任何文字处理工具打开SVG图像,通过改变部分代码来使图像具有互交功能,并可以随时插入到HTML中通过浏览器来观看。

10、JPG格式

联合照片专家组(外语简称jpg、JPEG外语全称:Joint Photographic Expert Group)。JPEG 图片以 24 位颜色存储单个光栅图像。JPEG是与平台无关的格式,支持最高级别的压缩,不过,这种压缩是有损耗的。渐近式 JPEG文件支持交错。

11、hsb模式

hsb模式是基于人眼对色彩的观察来定义的,在此模式中,所有的颜色都用色相或色调、饱和度、亮度三个特性来描述。

② 数字图像处理将来有什么用啊(请该专业人事回答,谢谢)

1)飞机遥感和卫星遥感技术中。许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。因此,以如此昂贵的代价进行简单直观的判读来获取图像是不合算的,而必须采用数字图像处理技术。如LANDSAT系列陆地卫星,采用多波段扫描器(MSS),在900km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米或100米左右(如1983年发射的LANDSAT-4,分辨率为30m)。这些图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面站上空时,再高速传送下来,然后由处理中心分析判读。这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。 2)生物医学工程方面的应用数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。除了上面介绍的CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。此外,在X光肺部图像增晰、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。 3)通信工程方面的应用当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s以上。要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、DPCM编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。 4)工业和工程方面的应用在工业和工程领域中图像处理技术有着广泛的应用,如自动装配线中检测零件的质量、并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。其中值得一提的是研制具备视觉、听觉和触觉功能的智能机器人,将会给工农业生产带来新的激励,目前已在工业生产中的喷漆、焊接、装配中得到有效的利用。 5)军事公安方面的应用在军事方面图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。 6)文化艺术方面的应用目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术--计算机美术。

数学方面要精通线性代数那一块,计算机要会编程,最好是C++编程

可能不够专业,本人刚学不久,敬请指教!

③ 图像处理工具的主要用途有哪些

数字图像处理是交叉学科。是未来技术向智能化发展的最富有前景,也最富有挑战的领域。其研究的领域博大精深,应用领域十分广泛,每个领域都可以让人安身立命一辈子。
一、(1)数字图像处理的典型应用:【图像压缩和传输(或者叫着图像通信也可以)】(如:静态图像JPEG压缩标准;动态MPEG标准,电信上类似的标准是H.264,娱乐上的MP4也属于这方面),主要研究内容是研发更有效的图像的编解码算法(现在已经有很多硬件实现的编解码芯片了,具体性能指标和适用的标准不同);
(2)生物识别为数字图像处理在【信息安全】领域的应用(包含指纹识别、虹膜识别、人脸识别等),当然交通系统使用的车牌识别也是类似的技术。通用模式是:图像预处理(如去噪、增强等)+ 不变特征提取 + 与特征库中特征进行匹配 => 识别;
生物医学工程方面的应用数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。除了CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。此外,在X光肺部图像增晰、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。
【医疗影像处理】:CT成像,核磁共振MRI,超声,X线成像。。。
主要研究内容:图像去噪,图像增强,图像识别,3维可视化等等
(3)而真正集中了最先进软硬件数字图像处理的应用领域是:
【军事】:首先图像数据类型上包含所有的成像频段能获取的影像(如无线电(雷达成像)、红外、可见光、紫外、X线。。。你把电磁光谱拉开看就明白),用声音回波来成像也可以,如声纳。千万不要片面地理解图像就是可见光成像,那是人眼的局限。
军事公安方面的应用在军事方面图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。
主要包含这些研究内容:目标捕获 目标锁定 目标跟踪
【机器人视觉】:啊现在的机器人还很笨呀,能自己绕开障碍物已经是了不起了。
(4)飞机遥感和卫星遥感技术中。许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。因此,以如此昂贵的代价进行简单直观的判读来获取图像是不合算的,而必须采用数字图像处理技术。如LANDSAT系列陆地卫星,采用多波段扫描器(MSS),在900km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米或100米左右(如1983年发射的LANDSAT-4,分辨率为30m)。这些图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面站上空时,再高速传送下来,然后由处理中心分析判读。这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。
(5)通信工程方面的应用当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s以上。要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、DPCM编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。
(6)工业和工程方面的应用在工业和工程领域中图像处理技术有着广泛的应用,如自动装配线中检测零件的质量、并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。其中值得一提的是研制具备视觉、听觉和触觉功能的智能机器人,将会给工农业生产带来新的激励,目前已在工业生产中的喷漆、焊接、装配中得到有效的利用。
(7)文化艺术方面的应用目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术--计算机美术。

④ 图像处理可以用到哪些实际应用中

图像处理可以用到以下实际应用中:

1.卫星图像处理

卫星图像处理(Satellite image processing),用计算机对遥感图像进行分析,以达到所需结果的技术。卫星图像处理方法在地图制图中的不断应用,不仅为地图制图人员提供了更加准确的数据信息,还且能有效的弥补传统地图制图中带来的不足,为制图人员提供了便利。

2.医学图像处理

医学影像学部分涵盖X线、CT、MRI、超声、核素显像五类医学影像,着重分析各类影像的成像原理和临床应用。医学图像处理部分包括医学图像处理的基本概念、图像增强、图像分割、图像配准、图像可视化几个主要部分。

3.面孔识别,特征识别

面部识别又称人脸识别、面像识别、面容识别等等,面部识别使用通用的摄像机作为识别信息获取装置。以非接触的方式获取识别对象的面部图像,计算机系统在获取图像后与数据库图像进行比对后完成识别过程。

面部识别是基于生物特征的识别方式 ,与指纹识别等传统的识别方式相比,具有实时、准确、高精度、易于使用、稳定性高、难仿冒、性价比高和非侵扰等特性,较容易被用户接受。

4.显微图像处理

显微图像是指在显微镜里观察到的图像。随着计算机图像处理技术和模式识别的发展,对显微图像进行分析处理已经逐渐在科学研究中得到应用,其中最重要的一个方面是对微生物进行分类识别。

5.汽车障碍识别

汽车想要拥有自动驾驶的能力,第一步必须具备与人类一样的形状识别能力,从而掌握周围的情况。而自动驾驶汽车上面的摄像头和激光雷达等就相当于汽车的眼睛,对道路和行人等进行探测和识别。

由于图像极大丰富的信息以及难以手工建模的特性,深度学习能最大限度的发挥其优势。也就是说深度学习就是将摄像头、以及雷达中探测到的信息进行识别,再通过芯片的运算,得出结论。

⑤ 数字图像处理有哪些应用

数字图像处理主要研究的内容有以下几个方面:
1)
图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大.因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理).目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用.
2)
图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量.压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行.编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术.
3)
图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等.图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分.如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响.图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像.
4)
图像分割图像分割是数字图像处理中的关键技术之一.图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础.虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法.因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一.
5)
图像描述是图像识别和理解的必要前提.作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法.对于特殊的纹理图像可采用二维纹理特征描述.随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法.
6)
图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类.图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视.

⑥ 使用统计图表进行数据分析有什么优点

进行数据分析主要使用的统计图表及优点:

1. 折线图:按照时间序列分析数据的变化趋势时使用。

折线图通常情况下X轴设定为时间,Y轴设定为其他指标值。分析页面浏览数,访问者数,转化数(率)等指标整体变化趋势时多用折线图。

⑦ 图像识别的具体应用

一、CCD图像传感器
CCD(ChargedCoupledDevice)于1969年在贝尔试验室研制成功,之后由日本开始批量生产,经过30多年的发展历程,从初期的10多万像素已经发展至今天主流应用的500万像素。CCD类型又可分为线阵(Linear)与面阵(Area)两种,其中线阵应用于影像扫描器及传真机上,面阵型多应用于数码相机、摄录影机、监视摄影机等多项影像输入产品上。目前CCD像元数已从100万像元提高到2000万像元以上,大面阵、小像元(感光小单元简称)的CCD摄像机层出不穷。随着超大规模微加工技术的发展,CCD传感器的分辨率将越来越高。CCD是固态图像传感器的一类,即电荷耦合式图像传感器,固态图像传感器是指将布设在半导体衬底上许多能实现光-电信号转换的小单元,用所控制的时钟脉冲实现读取的一类功能器件。图像传感器作为一种基础器件,因能实现信息的获取、转换和视觉功能的扩展,并能给出直观、真实、层次多、内容丰富的可视图像信息在现代社会中得到了越来越广泛地应用。
二、图像识别系统定位的工作原理
在现实生活中,人们可以很容易的“看到”一幅画面,但这一个十分“简单”过程并非如此简单。深入研究大致分为:成像在视网膜上;其次是大脑对图像进行认识、理解和分析;最后根据上述一系列处理的结果做出反应。由于图像识别系统基本上是摸仿了人对事物的认识过程,图像识别系统定位是采用了CCD摄像机(如同人的眼睛)通过透镜收集并聚焦来自目标的反射光线,借助必要的光学系统将此光投射于CCD光敏面上的光的空间分布信息转换为按时序输出的电信号—视频图像信号,可以在监视器上重现图像。

⑧ 图像识别技术的使用领域

图像识别技术的运用领域非常广泛,大家已知的领域我就不说了,在工业自动化也是有着大量的运用,例如:
1、激光在做定位切割、定位打标、定位焊接时,非常需要图像识别技术的帮助,不然,很难做到精准定位。
2、生产线上的机械手在抓取工件时,在不便做硬性的机械定位时,就一定要借助图像识别技术进行定位了
3、当然,还有很多的自动化生产线,都需要图像识别技术的帮助,这样的例子不胜枚举,凡是有自动控制的地方,在机械定位不能完成的时候,图像识别就要大显身手了。