當前位置:首頁 » 高清圖片 » 天體圖片高清視頻
擴展閱讀
平板電腦做圖片處理 2025-01-21 12:03:04

天體圖片高清視頻

發布時間: 2024-01-08 23:17:08

① 宇宙天體中,最大的有多大質量是多少

宇宙中的大是相對的,就像相對於螞蟻來說,人類顯得巨大無比,而一個人對於地球來說就像是滄海一粟,同時地球對於銀河系或是宇宙來說,也是非常不顯眼的存在。

那宇宙中最大的天體又能有多大呢?

大家都知道在太陽系中,太陽就是老大,而天文學上一般就是和太陽比一比。

至今最大的天體,是一個類星體,它的名字叫S5 0014+81,單單是重量就是太陽的400億倍,直徑2367億公里。

那它到底有多大呢,有圖有真相

這張圖片可以幫你理解這個物體的大小。


不過它距離我們非常遙遠,約有121億光年的距離,這也說明它產生於宇宙早期,僅在大爆炸後16億年就出現了,而基於黑洞的質量演化模型預測,它就是什麼也不吃,也可以存在大約1.342×10的99次方的年數,也就是1342後面跟著96個0,而我們的宇宙至今不過137億年。


基於目前的觀測和理論,要形成如此巨大的天體,需要更長的時間進行演化。但這個類星體不同於人類此前想像的那樣,它並不是在數十億年間慢慢形成的。這是一個很特殊的樣本。同時,它被認為在大爆炸後的早期宇宙中就已經開始形成,這無疑將沖擊人類目前對宇宙結構形成的理解。

② 宇宙天體中的深空天體,都是哪些

本星系群的成員有仙女星系、銀河系、三角座星系,還有大約50 個小星系。

Andromeda Galaxy(仙女座星系)

NGC604 ,拍攝自哈勃太空望遠鏡

來自:Pei Yun Hsu

③ 大多數天體都是球形的,這是為什麼呢

一般只有達到某個直徑上限的天體才具有球體狀態,這個值取決於天體本身的物質屬性。土衛一就是一個很好的例子:土衛一為太陽系岩石球體中體積最小的。簡單的說,這和引力勢能的差值(質量)以及流體靜力平衡相關,本文將為您簡單介紹這個原理。

首先來了解下我們熟悉而陌生的太陽,太陽不僅僅是球體,而且非常接近於圓球,估計扁率大概只有900萬分之一,這意味著其極直徑和赤道直徑的差別不到10千米,這和太陽約140萬千米的直徑比起來,都不算什麼了。我們再來看看其他天體,月亮的扁率約為0.0012,地球約為0.003。

我們在前言所提到的土衛一,它是目前太陽系最小的岩石球體,可以根據自身的引力以及自轉形成球體。土衛一的直徑大約為400千米,自轉周期大約為22小時。但是比土衛一更小的天體,卻不是球體的了。比如土衛七,形狀詭異,其直徑約為270千米,自轉周期為混沌狀態。又如木衛五,直徑約為200千米,其形狀也是不規則的。如果比土衛一直徑大的話,那麼天體就成球體了。如土衛二,直徑約為500千米,形狀為球體。


美國阿波羅17號宇航員在前往月球途中拍攝的“藍色彈珠”地球照片(攝於1972年12月7日,非原始照片),圖:NASA/Apollo 17 crew; taken by either Harrison Schmitt or Ron Evans

④ 宇宙是什麼樣子的 給點圖片

宇宙是什麼樣子的,歷史已有的觀點:
1917年,愛因斯坦發表了著名的「廣義相對論」,為我們研究大尺度、大質量的宇宙提供了比牛頓「萬有引力定律」更先進的武器。應有後,科學家解決了恆星一生的演化問題。而宇宙是否是靜止的呢?對這一問題,連愛因斯坦也犯了了一個大錯誤。他認為宇宙是靜止的,然而1929年美國天文學家哈勒以不可辯駁的實驗,證明了宇宙不是靜止的,而是膨脹的。正像我們吹一隻大氣球一樣,恆星都在離我們遠去。離我們越遠的恆星,遠離我們的速度越快。可以推想:如果存在這樣的恆星,它離我們足夠遠以至於它離開我們的速度達到光速的時候,它發出的光就永遠也不可能達到地球了。從這個意義上講,我們可以認為他是不存在的。因此,我們認為宇宙是有限的。
「宇宙到底是什麼樣子?」目前尚無定論。值得一提的是史蒂芬.霍金的觀點比較讓人容易接受:宇宙是有限無界的,只不過比地球多了幾維。比如,我們的地球就是有限而無界的。在地球上,無論是從南極到北極,還是從北極走到南極,你始終不可能找到地球的邊界,但你不能由此認為地球是無限的。實際上,我們都知道地球是有限的。地球如此,宇宙亦是如此。
怎樣理解宇宙比地球多了幾維呢?舉一個例子:一個小球沿地面滾動並掉進了一個小洞中,在我們看來,小球是存在的,它還在洞裡面,因為我們人類是「三維」的;而對於一個動物來說,它得出的結論就會是:小球已經不存在了!它消失了。為什麼得出這樣的結論呢?因為它生活在「二維」世界裡,對「三維」事件是無法清楚理解的。同樣的道理,我們人類生活在「三維」世界裡,對於比我們多幾維的宇宙,也是很難理解清楚的。這也正是對於「宇宙是什麼樣子」這個問題無法解釋清楚的原因。
1.均勻的宇宙
長期以來,人們相信地球是宇宙的中心。哥白尼把這個觀點顛倒了過來,他認為太陽才是宇宙的中心。地球和其它行星都是圍繞太陽轉動,恆星則是鑲嵌在天球的最外層上。布魯諾進一步認為,宇宙沒有中心,恆星都是遙遠的太陽。
無論是托勒密的地心說還是哥白尼的日心說,都認為宇宙是有限的。教會支持宇宙有限的論點。但是,布魯諾敢說宇宙是無限的,從而挑起了宇宙究竟是有限還是無限的長期論戰。這場論戰並沒有因為教會燒死布魯諾而停止下來。主張宇宙有限的人說:「宇宙怎麼可能是無限的呢?」這個問題同樣也不好回答。
隨著天文觀測技術的發展,人們看到,確實像布魯諾所說的那樣,恆星是遙遠的太陽。人們還進一步認識到,銀河是由無數個太陽系組成的大星系,我們的太陽系處在銀河系的邊緣,圍繞著銀河系的中心旋轉,轉速大約每秒250公里,圍繞銀心轉一圈約需2.5億年。太陽系的直徑充其量1光年,而銀河系的直徑高達10萬光年。銀河系由100多億顆恆星組成,太陽系在銀河系中的地位,真像一粒沙子處在北京城中。後來又發現,我們的銀河系還與其它銀河系組成更大的星系團,星系團的直徑約為107光年(1000萬光年)。目前,望遠鏡觀測距離已達100億光年以上,在所見的范圍內,有無數個星系團存在,這些星系團不再組成更大的團,而是均勻各向同性地分布著。也就是說,在107光年的尺度以下,物質是成團分布的。衛星繞著行星轉動,行星、彗星繞著恆星轉動,形成了一個個太陽系。這些太陽系分別由一個、兩個、三個或更多個太陽以及它們的行星組成。有兩個太陽的稱為雙星系,有三個以上太陽的稱為聚星系。成千上億個太陽系聚集在一起,形成銀河系,組成銀河系的恆星(太陽系)都圍繞著共同的重心—銀心轉動。無數銀河系組成的星團,團中的銀河系也同樣圍繞著它們共同的重心轉動。但是,星系團之間,不再有成團結構。各個星系團均勻地分布著,無規則的運動著。從我們地球上,往四面八方看,情況都差不多。粗略地說,星系團有點像容器中的氣體分子,均勻分布著,做著無規則運動。這就是說,在108光年(一億光年)的尺度以上,宇宙中的物質不再是成團的,而是均勻分布的。
由於光的傳播需要時間,我們看到的距離我們一億光年的星系,實際上是那個星系一億光年前的樣子。所以,我們用望遠鏡看到的,不僅是空間距離遙遠的星系,而且是它們的過去。從望遠鏡看來,不管多遠距離的星系團,都均勻各向同性的分布著。因而我們可以認為,宇觀尺度上(105光年以上)物質分布的均勻狀態,不是現在才有的,而是早已如此。
於是,天體物理學家提出一條規律,即所謂宇宙學原理。這條原理說,在宇觀尺度以上,三維空間在任何時刻都是均勻各向同性的。現在看來,宇宙學原理是對的。所有星系都差不多,都有相似的演化歷程。因此我們用望遠鏡不僅看空間,而且在看時間,在看我們的歷史。
2.有限而無邊的宇宙
愛因斯坦發表相對論以後,考慮到萬有引力比電磁力弱得多,不可能在分子、原子、原子核等研究中產生重要的影響,因而他把注意力放在了天體物理上。他認為,宇宙才是廣義相對論大有用武之地的領域。
愛因斯坦1915年發表廣義相對論,1917年就提出了一個建立在廣義相對論基礎上的宇宙模型。這是一個人們完全意想不到的模型。在這個模型中,宇宙的三維空間是有限無邊的,而且不隨時間變化。以往人們認為,有限就是有邊。愛因斯坦把有限和有邊區分了開來。
一個長方形的桌面,有確定的長和寬,也有確定的面積,因而大小是有限的,同時它有明顯的四條邊,因此是有邊的。如果有一個小甲蟲在它上面爬,無論向哪個方向爬,都會很快到達桌面的邊緣。所以桌面是有限有邊的二維空間。如果桌面向四面八方無限伸展,成為歐氏幾何中的平面,那麼,這個歐式平面是無限無邊的二維空間。
我們再看一個籃球的表面,如果籃球的半徑為r,那麼球面的面積是4∏r0,大小是有限的。但是,這個二維球面是無邊的。假如一個小甲蟲在它上面爬,永遠也不會走到盡頭。所以,籃球面是一個有限無邊的二維空間。
按照宇宙學原理,在宇觀尺度上,三維空間是均勻各向同性的。愛因斯坦認為,這樣的空間必定是常曲率空間,也就是說空間個點的彎曲程度應該相同,即應該有相同的曲率。由於有物質存在,四維時空應該是彎曲的。三維空間也應該是彎的而不應是平的。愛因斯坦覺得,這樣的宇宙應該是三維超球面。三維超球面不是通常的球體,而是二維球面的推廣。通常的球體是有限有邊的,體積是3∕4∏r3,它的邊就是二維球面。三維超球面是有限無邊的,生活在其中的三維生物(例如我們人類就是有長、寬、高的三維生物),無論朝哪個方向前進均碰不著邊。假如它一直朝北走,最終會從南邊回來。
宇宙學原理還認為,三維空間的均勻各向同性是在任何時刻都保持的。愛因斯坦覺得其中最簡單的情況就是靜態宇宙,也就是說,不隨時間變化的宇宙。這樣的宇宙只要在某一時刻均勻各向同性,就永遠保持均勻各向同性。
愛因斯坦試圖在三維空間均勻各向同性、且不隨時間變化的假定下,求解廣義相對論的場方程。場方程非常復雜,而且需要知道初始條件(宇宙最初的情況)和邊界條件(宇宙邊緣處的情況)才能求解。本來,解這樣的方程是十分困難的事情,但是愛因斯坦非常聰明,他設想宇宙是有限無邊的,沒有邊自然就不需要邊界條件。他又設想宇宙是靜態的,現在和過去都一樣,初始條件也就不需要了。再加上對稱性的限制(要求三維空間均勻各向同性),場方程就變得好解多了。但還是得不出結果。反復思考之後,愛因斯坦終於明白了求不出解的原因:廣義相對論可以看作是萬有引力定律的推廣,只包含「吸引效應」不包含「排斥效應」。而維持一個不隨時間變化的宇宙,有排斥效應和吸引效應相平衡才行。這就是說,從廣義相對論場方程不可能得出「靜態」宇宙。要想得出靜態宇宙,必須修改場方程。於是他在方程中增加了一個「排斥項」,叫做宇宙項。這樣,愛因斯坦終於計算出了一個靜態的,均勻各向同性的、有限無邊的宇宙模型。一時間大家非常興奮,科學終於告訴我們,宇宙是不隨時間變化的、是有限無邊的。看來,關於宇宙有限還是無限的爭論似乎可以畫上一個句號了。
3.宇宙的「宇宙模型」之說
幾年之後,一個名不見經傳的前蘇聯數學家弗里德曼,應用不加宇宙項的場方程,得到一個膨脹的、或脈動的宇宙模型。弗里德曼宇宙在三維空間上也是均勻、各向同性的,但是,它不是靜態的。這個宇宙模型隨時間變化,分三種情況,三維空間的曲率是負的;第二種情況,三維空間的曲率為零,也就是說,三維空間是平直的;第三種情況,三維空間的曲率是正的。前兩種情況,宇宙不斷地膨脹;第三種情況,宇宙先膨脹,達到一個最大值後開始收縮,然後再膨脹,再收縮、、、、、、因此第三種宇宙是脈動的。弗里德曼宇宙最初發表在一個不太著名的雜志上。後來,西歐一些數學家物理學家得到類似的宇宙模型。愛因斯坦得知這類膨脹或脈動的宇宙模型後,十分興奮。他認為自己的模型不好,應該放棄,弗里德曼模型才是正確的宇宙模型。
同時,愛因斯坦宣稱,自己在廣義相對論的場方程上加宇宙項是錯誤的,場方程不應該含有宇宙項,而應該是原來的老樣子。但是,宇宙項就像「天方夜譚」中從瓶子里放出的魔鬼再也收不回去了。後人沒有理睬愛因斯坦的意見,繼續探討宇宙項的意義。今天,廣義相對論的場方程有兩種,一種不含宇宙項,另一種含宇宙項,都在專家們的應用和研究中。
早在1910年前後,天文學家就發現大多數星系的光譜有紅移現象,個別星系的光譜還有紫移現象。這些現象可以用多普勒效應來解釋。遠離我們而去的光源發出的光,我們收到時會感到其頻率降低,波長變長,並出現光譜線紅移的現象,即光譜線向長波方向移動的現象。反之,向著我們迎面而來的光源,光譜線會向短波方向移動,出現紫移現象。這種現象與聲音的多普勒效應相似。許多人都有過這樣的感受;迎面而來的火車其鳴叫聲特別尖銳刺耳,遠離我們而去的火車其鳴叫聲則明顯遲鈍。這就是聲音的多普勒效應,迎面而來的生源發出的聲波,我們感到其頻率升高,遠離我們而去的生源發出的聲波,我們則感到其頻率降低。
如果認為星系的紅移、紫移現象是多普勒效應,那麼大多數星系都在遠離我們,只有個別星系向我們靠近。隨之進行的研究發現,那些個別向我們靠近的紫移星系,都在我們自己的本星系團中(我們銀河系所在的星系團稱本星系團)。本星系團中的星系,多數紅移,少數紫移;而其它星系團中的星系就全是紅移了。
1929年,美國天文學家哈勃總結了當時的一些觀測數據,提出了一條經驗規律,河外星系(即我們銀河系之外的其他銀河系)的紅移大小正比於它們離開我們銀河系中心的距離。由於多普勒效應的紅移量與光源的速度成正比,所有,上述定律又表述為:河外星系的推行速度與它們離我們的距離成正比:
V=HD
式中的V是河外星系的退行速度,D是它們到我們銀河系中心的距離。這個定律成為哈勃定律,比例常數H稱為哈勃常數。按照哈勃定律,所有的河外星系都在遠離我們。而且,離我們越遠的河外星系,逃離越快。
哈勃定律反映的規律與宇宙膨脹理論正好相符。個別星系的紫移可以這樣解釋,本星系團內部個星系要圍繞它們的共同重心移動,因此總會有少數星系在一定時間內向我們的銀河系靠近。這種紫移現象與整體的宇宙膨脹無關。
哈勃定律大大支持了弗里德曼的宇宙模型。不過,如果查看一下當年哈勃得出定律時所用的數據圖,人民會感到驚訝。在距離與紅移量的關系圖中,哈勃標出的點並不集中在一條直線附近,而是比較分散的。哈勃怎麼敢斷定這些點應該描繪成一條直線呢?一個可能的答案是,哈勃抓住了規律的本質,拋開了細節。另一個可能是,哈勃已經知道當時的宇宙膨脹理論,所以大膽認為自己的觀測與該理論一致。以後的觀測數據越來越精,數據圖中的點也越來越集中在直線附近,哈勃定律終於被大量實驗觀測所確認。
4.宇宙到底有限還是無限
現在,我們又回到前面的話題,宇宙到底有限還是無限?有邊還是無邊?對此,我們從廣義相對論、大爆炸宇宙模型和天文觀測的角度來探討這一問題。
滿足宇宙學原理(三維空間均勻各向同性)的宇宙,肯定是無邊的。但是否有限,卻要分三種情況來討論。
如果三維空間的曲率是正的,那麼宇宙將是有限無邊的。不過,它不同於愛因斯坦的有限無邊的靜態宇宙,這個宇宙是動態的,將隨時間變化,不斷的脈動,不可能靜止。這個宇宙從空間體積無限小的奇點開始爆炸、膨脹。此奇點的物質密度無限大。溫度無限高、空間曲率也無限大。在膨脹過程中宇宙的溫度逐漸降低,物質密度、空間曲率和時空曲率逐漸減小。體積膨脹到一個最大值後,將轉為收縮。在收縮過程中,溫度重新升高】物質密度、空間曲率和時空曲率逐漸增大,最後達到新奇點許多人認為,這個宇宙在達到新奇點之後將重新開始膨脹。顯然,這個宇宙的體積是有限的,這是一個脈動的、有限無邊的宇宙。
如果三維空間的曲率為零,也就是說,三維空間是平直的(宇宙中有物質存在,四維時空是彎曲的),那麼這個宇宙一開始就具有無限大的三維體積,這個初始的無限大三維體積是奇異的(即「無窮大」的奇點)。這個「無窮大」奇點,我開始,爆炸不是發生在初始三維空間中的某一點,而是發生在初始三維空間的每一點,即大爆炸發生在整個「無窮大」奇點上。這個「無窮大」奇點,溫度無限高,密度無限大,時空曲率也無限大(三維空間曲率為零)。爆炸發生後,整個「奇點」開始膨脹,成為正常的非奇異時空,溫度、密度和時空曲率都逐漸降低。這個過程將永遠地進行下去。這是一種不大容易理解的圖像:一個無窮大的體積在不斷地膨脹。顯然,這種宇宙是無限的,它是一個無限無邊的宇宙。
三維空間曲率為負的情況與三維空間曲率為零的情況比較相似。宇宙一開始就有無窮大的三維體積,這個初始體積也是奇異的,即三維「無窮大」奇點。它的溫度、密度無限高,三維、四維曲率都無限大。大爆炸發生在整個「奇點」上,爆炸後,無限大的三維體積將永遠膨脹下去,溫度、密度和曲率都將逐漸降下來。這也是一個無限的宇宙,確切地說是無限無邊的宇宙。
那麼,我們的宇宙到底屬於上述三種情況的哪一種呢?我們宇宙的空間曲率為正,為負還是為零呢?這個問題要由觀測來決定。
廣義相對論的研究表明,宇宙中的物質存在一個臨界密度pc,大約是每個立方米三個核子(質子或中子)。如果我們宇宙中物質的密度P大於PC,則三維空間曲率為正,宇宙是有限無邊的;如果P小於PC,則三維空間曲率為負,宇宙也是有限無邊的。因此,觀測宇宙中物質的平均密度,可以判定我們的宇宙究竟屬於哪一種,究竟有限還是無限。
此外,還有另一個判據,那就是減速因子。河外星系的紅移,反映的膨脹是減速膨脹,也就是說,河外星系遠離我們的速度在不斷減小。從減速的快慢,也可以判定宇宙的類型。如果減速因子q大於1/2,三維空間曲率將是正的,宇宙膨脹到一定程度將收縮;如果q等於1/2,三維空間曲率為零,宇宙將永遠膨脹下去;如果q小於1/2,三維空間曲率將是負的,宇宙也將永遠膨脹下去。
下表列出了有關的情況:
我們有了兩個判據,可以決定我們的宇宙究竟屬於哪一種了。觀測結果表明,p<pc,我們宇宙的空間曲率為負,是無限無邊的宇宙,將永遠膨脹下去!不幸的是,減速因子觀測給出了相反的結果,q>1/2,這表明我們宇宙的空間曲率為正,宇宙是有限無邊的,脈動的,膨脹到一定程度會收縮回來。哪一種正確呢?有些人傾向於認為減速因子的觀測更可靠,推測宇宙中可能有某些暗物質被忽略了,如果找到這些暗物質,就會發現p實際上是大於pc的。另一些人則持有相反的看法。還有一些人認為,兩種觀測方法雖然結論相反,但得到的空間曲率都與零相差不大,可能宇宙的空間曲率就是為零。然而,要統一大家的認識,還需要進一步的實驗觀測和理論推敲。今天,我們仍然肯定不了宇宙究竟有限還是無限,只能肯定宇宙無邊,而且現在正在膨脹!此外,還知道膨脹大約開始於100億~200億年以前,這就是說,我們的宇宙大約起源於100億~200億年以前。
5.宇宙巨壁和宇宙巨洞
20世紀70年代以前,人們普遍認為大尺度宇宙的宇宙物質分布是均勻的,星系團均勻的地散布宇宙空間。然而,近年來天文學研究的進步改變了人們的共識。人們發現,宇宙在大尺度上也是有結構的。
20世紀50年代,沃庫勒首先提出包括我們銀河系所屬的本星系群在內本超星系團。已先後發現十幾個超星系團。星系團像一些珠子,被一些孤立的星系串在一起,形成超星系團。最大的超星系團超過了10億光年。1978年,在發現A1367超星系團的發現了一個巨洞,其中幾乎沒有星系。不久,有著牧夫座發現一個直徑達2.5億光年的巨洞,巨洞里有一些暗的矮星系。巨洞和超星系團的存在表明,宇宙的結構好像肥皂泡沫那樣由許多巨洞組成。星系、星系團和超星系團位於「泡沫巨洞」的「壁」上,把巨洞隔離開來。1986年,美國天文學家的研究結果表明,這些星系似乎擁擠在一條雜亂相連的不規則的環形周界上,像是附著在巨大的泡沫壁上,周界的跨度約50兆秒差距。後來他們的研究又得到進一步的發展。他們指出:宇宙存在著尺度約達50兆秒差距的低密度的宇宙巨洞,及高密度的星系巨壁,在他們所研究的天區存在一個星系巨壁,巨壁長為170兆秒差距,高為60兆秒差距,寬度僅為5兆秒差距。
星系巨壁(也稱宇宙長城或宇宙巨壁)和宇宙巨洞是怎麼產生的呢?人們認為應從宇宙早期去找原因,在宇宙誕生後不長時期內,雖然宇宙是均勻的,但各種尺度的密度起伏仍然是存在的,有的起伏被抑制住了,有的起伏得到發現,被引力放大成現在所觀測到的大尺度結構。
6.暗物質之謎
不少天文學家認為宇宙中有90%以上的物質是以暗物質的形式隱藏著的。有些什麼事實和現象表示宇宙中存在暗物質呢?
早在20世紀30年代荷蘭天文學家奧爾特就注意到,為了說明恆星來回穿越銀道面的運動,銀河系圓盤中必須有占銀河系總質量的一半的暗物質存在。20世紀70年代,一些天文學家的研究證明星系的質量主要並不集中在星系核心,而是均勻的分布在整個星系中。這就暗示人們,在星系暈中一定存在著大量看不見的暗物質。這些暗物質是些什麼呢?
科學家認為,暗物質中有少量是所謂的重子物質,如極暗的褐矮星,質量為木星30倍~80倍的大行星,恆星殘骸,小黑洞,星系際物質等。它們與可見物質一樣,雖也是由質子、中子和電子等組成的物質,但很難用一般光學望遠鏡觀測到它們。相對而言,絕大部分暗物質是非重子物質,它們都是些具有特意性能的,質量很小的基本粒子,如中微子、軸子及探討中的引力微子、希格斯微子、光微子等。
怎樣才能探測到這些暗物質呢?科學家做了許多努力。對於重子暗物質,他們重點探測存在於星系暈中的暗天體,它們被叫做大質量緻密度暈天體。1993年,由美澳等國天文學家組成的三個天文研究小組開始了尋找緻密暈天體的研究工作。到1996年,他們報告說,已找到7個這樣的天體。它們的質量由1/10太陽質量到1個太陽質量不等。有些天文學家認為這些天體可能是白矮星、紅矮星、褐矮星、木星大小的天體、中子星以及小黑洞,也有人認為銀河系中50%的暗物質可能是核燃料耗盡的死星。
關於非重子物質,現在尚未觀測到這些幽靈般的粒子存在的證據。
近年來對中微子質量的測量取得了一些新結果。1994年美國物理學家懷特領導的物理學小組測量出中微子質量在0.5~5電子伏(1電子伏等於1.7827×10(~36)千克)之間。在每一立方米的空間中約有360億個中微子。如果是這樣的話,那麼宇宙中全部中微子的總質量要比所有已知的星系的總和還要大。
到目前為止,宇宙中暗物質的問題仍是個未解之謎。