『壹』 五種大數據處理架構
五種大數據處理架構
大數據是收集、整理、處理大容量數據集,並從中獲得見解所需的非傳統戰略和技術的總稱。雖然處理數據所需的計算能力或存儲容量早已超過一台計算機的上限,但這種計算類型的普遍性、規模,以及價值在最近幾年才經歷了大規模擴展。
本文將介紹大數據系統一個最基本的組件:處理框架。處理框架負責對系統中的數據進行計算,例如處理從非易失存儲中讀取的數據,或處理剛剛攝入到系統中的數據。數據的計算則是指從大量單一數據點中提取信息和見解的過程。
下文將介紹這些框架:
· 僅批處理框架:
Apache Hadoop
· 僅流處理框架:
Apache Storm
Apache Samza
· 混合框架:
Apache Spark
Apache Flink
大數據處理框架是什麼?
處理框架和處理引擎負責對數據系統中的數據進行計算。雖然「引擎」和「框架」之間的區別沒有什麼權威的定義,但大部分時候可以將前者定義為實際負責處理數據操作的組件,後者則可定義為承擔類似作用的一系列組件。
例如Apache Hadoop可以看作一種以MapRece作為默認處理引擎的處理框架。引擎和框架通常可以相互替換或同時使用。例如另一個框架Apache Spark可以納入Hadoop並取代MapRece。組件之間的這種互操作性是大數據系統靈活性如此之高的原因之一。
雖然負責處理生命周期內這一階段數據的系統通常都很復雜,但從廣義層面來看它們的目標是非常一致的:通過對數據執行操作提高理解能力,揭示出數據蘊含的模式,並針對復雜互動獲得見解。
為了簡化這些組件的討論,我們會通過不同處理框架的設計意圖,按照所處理的數據狀態對其進行分類。一些系統可以用批處理方式處理數據,一些系統可以用流方式處理連續不斷流入系統的數據。此外還有一些系統可以同時處理這兩類數據。
在深入介紹不同實現的指標和結論之前,首先需要對不同處理類型的概念進行一個簡單的介紹。
批處理系統
批處理在大數據世界有著悠久的歷史。批處理主要操作大容量靜態數據集,並在計算過程完成後返回結果。
批處理模式中使用的數據集通常符合下列特徵…
· 有界:批處理數據集代表數據的有限集合
· 持久:數據通常始終存儲在某種類型的持久存儲位置中
· 大量:批處理操作通常是處理極為海量數據集的唯一方法
批處理非常適合需要訪問全套記錄才能完成的計算工作。例如在計算總數和平均數時,必須將數據集作為一個整體加以處理,而不能將其視作多條記錄的集合。這些操作要求在計算進行過程中數據維持自己的狀態。
需要處理大量數據的任務通常最適合用批處理操作進行處理。無論直接從持久存儲設備處理數據集,或首先將數據集載入內存,批處理系統在設計過程中就充分考慮了數據的量,可提供充足的處理資源。由於批處理在應對大量持久數據方面的表現極為出色,因此經常被用於對歷史數據進行分析。
大量數據的處理需要付出大量時間,因此批處理不適合對處理時間要求較高的場合。
Apache Hadoop
Apache Hadoop是一種專用於批處理的處理框架。Hadoop是首個在開源社區獲得極大關注的大數據框架。基於谷歌有關海量數據處理所發表的多篇論文與經驗的Hadoop重新實現了相關演算法和組件堆棧,讓大規模批處理技術變得更易用。
新版Hadoop包含多個組件,即多個層,通過配合使用可處理批數據:
· HDFS:HDFS是一種分布式文件系統層,可對集群節點間的存儲和復制進行協調。HDFS確保了無法避免的節點故障發生後數據依然可用,可將其用作數據來源,可用於存儲中間態的處理結果,並可存儲計算的最終結果。
· YARN:YARN是Yet Another Resource Negotiator(另一個資源管理器)的縮寫,可充當Hadoop堆棧的集群協調組件。該組件負責協調並管理底層資源和調度作業的運行。通過充當集群資源的介面,YARN使得用戶能在Hadoop集群中使用比以往的迭代方式運行更多類型的工作負載。
· MapRece:MapRece是Hadoop的原生批處理引擎。
批處理模式
Hadoop的處理功能來自MapRece引擎。MapRece的處理技術符合使用鍵值對的map、shuffle、rece演算法要求。基本處理過程包括:
· 從HDFS文件系統讀取數據集
· 將數據集拆分成小塊並分配給所有可用節點
· 針對每個節點上的數據子集進行計算(計算的中間態結果會重新寫入HDFS)
· 重新分配中間態結果並按照鍵進行分組
· 通過對每個節點計算的結果進行匯總和組合對每個鍵的值進行「Recing」
· 將計算而來的最終結果重新寫入 HDFS
優勢和局限
由於這種方法嚴重依賴持久存儲,每個任務需要多次執行讀取和寫入操作,因此速度相對較慢。但另一方面由於磁碟空間通常是伺服器上最豐富的資源,這意味著MapRece可以處理非常海量的數據集。同時也意味著相比其他類似技術,Hadoop的MapRece通常可以在廉價硬體上運行,因為該技術並不需要將一切都存儲在內存中。MapRece具備極高的縮放潛力,生產環境中曾經出現過包含數萬個節點的應用。
MapRece的學習曲線較為陡峭,雖然Hadoop生態系統的其他周邊技術可以大幅降低這一問題的影響,但通過Hadoop集群快速實現某些應用時依然需要注意這個問題。
圍繞Hadoop已經形成了遼闊的生態系統,Hadoop集群本身也經常被用作其他軟體的組成部件。很多其他處理框架和引擎通過與Hadoop集成也可以使用HDFS和YARN資源管理器。
總結
Apache Hadoop及其MapRece處理引擎提供了一套久經考驗的批處理模型,最適合處理對時間要求不高的非常大規模數據集。通過非常低成本的組件即可搭建完整功能的Hadoop集群,使得這一廉價且高效的處理技術可以靈活應用在很多案例中。與其他框架和引擎的兼容與集成能力使得Hadoop可以成為使用不同技術的多種工作負載處理平台的底層基礎。
流處理系統
流處理系統會對隨時進入系統的數據進行計算。相比批處理模式,這是一種截然不同的處理方式。流處理方式無需針對整個數據集執行操作,而是對通過系統傳輸的每個數據項執行操作。
· 流處理中的數據集是「無邊界」的,這就產生了幾個重要的影響:
· 完整數據集只能代表截至目前已經進入到系統中的數據總量。
· 工作數據集也許更相關,在特定時間只能代表某個單一數據項。
處理工作是基於事件的,除非明確停止否則沒有「盡頭」。處理結果立刻可用,並會隨著新數據的抵達繼續更新。
流處理系統可以處理幾乎無限量的數據,但同一時間只能處理一條(真正的流處理)或很少量(微批處理,Micro-batch Processing)數據,不同記錄間只維持最少量的狀態。雖然大部分系統提供了用於維持某些狀態的方法,但流處理主要針對副作用更少,更加功能性的處理(Functional processing)進行優化。
功能性操作主要側重於狀態或副作用有限的離散步驟。針對同一個數據執行同一個操作會或略其他因素產生相同的結果,此類處理非常適合流處理,因為不同項的狀態通常是某些困難、限制,以及某些情況下不需要的結果的結合體。因此雖然某些類型的狀態管理通常是可行的,但這些框架通常在不具備狀態管理機制時更簡單也更高效。
此類處理非常適合某些類型的工作負載。有近實時處理需求的任務很適合使用流處理模式。分析、伺服器或應用程序錯誤日誌,以及其他基於時間的衡量指標是最適合的類型,因為對這些領域的數據變化做出響應對於業務職能來說是極為關鍵的。流處理很適合用來處理必須對變動或峰值做出響應,並且關注一段時間內變化趨勢的數據。
Apache Storm
Apache Storm是一種側重於極低延遲的流處理框架,也許是要求近實時處理的工作負載的最佳選擇。該技術可處理非常大量的數據,通過比其他解決方案更低的延遲提供結果。
流處理模式
Storm的流處理可對框架中名為Topology(拓撲)的DAG(Directed Acyclic Graph,有向無環圖)進行編排。這些拓撲描述了當數據片段進入系統後,需要對每個傳入的片段執行的不同轉換或步驟。
拓撲包含:
· Stream:普通的數據流,這是一種會持續抵達系統的無邊界數據。
· Spout:位於拓撲邊緣的數據流來源,例如可以是API或查詢等,從這里可以產生待處理的數據。
· Bolt:Bolt代表需要消耗流數據,對其應用操作,並將結果以流的形式進行輸出的處理步驟。Bolt需要與每個Spout建立連接,隨後相互連接以組成所有必要的處理。在拓撲的尾部,可以使用最終的Bolt輸出作為相互連接的其他系統的輸入。
Storm背後的想法是使用上述組件定義大量小型的離散操作,隨後將多個組件組成所需拓撲。默認情況下Storm提供了「至少一次」的處理保證,這意味著可以確保每條消息至少可以被處理一次,但某些情況下如果遇到失敗可能會處理多次。Storm無法確保可以按照特定順序處理消息。
為了實現嚴格的一次處理,即有狀態處理,可以使用一種名為Trident的抽象。嚴格來說不使用Trident的Storm通常可稱之為Core Storm。Trident會對Storm的處理能力產生極大影響,會增加延遲,為處理提供狀態,使用微批模式代替逐項處理的純粹流處理模式。
為避免這些問題,通常建議Storm用戶盡可能使用Core Storm。然而也要注意,Trident對內容嚴格的一次處理保證在某些情況下也比較有用,例如系統無法智能地處理重復消息時。如果需要在項之間維持狀態,例如想要計算一個小時內有多少用戶點擊了某個鏈接,此時Trident將是你唯一的選擇。盡管不能充分發揮框架與生俱來的優勢,但Trident提高了Storm的靈活性。
Trident拓撲包含:
· 流批(Stream batch):這是指流數據的微批,可通過分塊提供批處理語義。
· 操作(Operation):是指可以對數據執行的批處理過程。
優勢和局限
目前來說Storm可能是近實時處理領域的最佳解決方案。該技術可以用極低延遲處理數據,可用於希望獲得最低延遲的工作負載。如果處理速度直接影響用戶體驗,例如需要將處理結果直接提供給訪客打開的網站頁面,此時Storm將會是一個很好的選擇。
Storm與Trident配合使得用戶可以用微批代替純粹的流處理。雖然藉此用戶可以獲得更大靈活性打造更符合要求的工具,但同時這種做法會削弱該技術相比其他解決方案最大的優勢。話雖如此,但多一種流處理方式總是好的。
Core Storm無法保證消息的處理順序。Core Storm為消息提供了「至少一次」的處理保證,這意味著可以保證每條消息都能被處理,但也可能發生重復。Trident提供了嚴格的一次處理保證,可以在不同批之間提供順序處理,但無法在一個批內部實現順序處理。
在互操作性方面,Storm可與Hadoop的YARN資源管理器進行集成,因此可以很方便地融入現有Hadoop部署。除了支持大部分處理框架,Storm還可支持多種語言,為用戶的拓撲定義提供了更多選擇。
總結
對於延遲需求很高的純粹的流處理工作負載,Storm可能是最適合的技術。該技術可以保證每條消息都被處理,可配合多種編程語言使用。由於Storm無法進行批處理,如果需要這些能力可能還需要使用其他軟體。如果對嚴格的一次處理保證有比較高的要求,此時可考慮使用Trident。不過這種情況下其他流處理框架也許更適合。
Apache Samza
Apache Samza是一種與Apache Kafka消息系統緊密綁定的流處理框架。雖然Kafka可用於很多流處理系統,但按照設計,Samza可以更好地發揮Kafka獨特的架構優勢和保障。該技術可通過Kafka提供容錯、緩沖,以及狀態存儲。
Samza可使用YARN作為資源管理器。這意味著默認情況下需要具備Hadoop集群(至少具備HDFS和YARN),但同時也意味著Samza可以直接使用YARN豐富的內建功能。
流處理模式
Samza依賴Kafka的語義定義流的處理方式。Kafka在處理數據時涉及下列概念:
· Topic(話題):進入Kafka系統的每個數據流可稱之為一個話題。話題基本上是一種可供消耗方訂閱的,由相關信息組成的數據流。
· Partition(分區):為了將一個話題分散至多個節點,Kafka會將傳入的消息劃分為多個分區。分區的劃分將基於鍵(Key)進行,這樣可以保證包含同一個鍵的每條消息可以劃分至同一個分區。分區的順序可獲得保證。
· Broker(代理):組成Kafka集群的每個節點也叫做代理。
· Procer(生成方):任何向Kafka話題寫入數據的組件可以叫做生成方。生成方可提供將話題劃分為分區所需的鍵。
· Consumer(消耗方):任何從Kafka讀取話題的組件可叫做消耗方。消耗方需要負責維持有關自己分支的信息,這樣即可在失敗後知道哪些記錄已經被處理過了。
由於Kafka相當於永恆不變的日誌,Samza也需要處理永恆不變的數據流。這意味著任何轉換創建的新數據流都可被其他組件所使用,而不會對最初的數據流產生影響。
優勢和局限
乍看之下,Samza對Kafka類查詢系統的依賴似乎是一種限制,然而這也可以為系統提供一些獨特的保證和功能,這些內容也是其他流處理系統不具備的。
例如Kafka已經提供了可以通過低延遲方式訪問的數據存儲副本,此外還可以為每個數據分區提供非常易用且低成本的多訂閱者模型。所有輸出內容,包括中間態的結果都可寫入到Kafka,並可被下游步驟獨立使用。
這種對Kafka的緊密依賴在很多方面類似於MapRece引擎對HDFS的依賴。雖然在批處理的每個計算之間對HDFS的依賴導致了一些嚴重的性能問題,但也避免了流處理遇到的很多其他問題。
Samza與Kafka之間緊密的關系使得處理步驟本身可以非常鬆散地耦合在一起。無需事先協調,即可在輸出的任何步驟中增加任意數量的訂閱者,對於有多個團隊需要訪問類似數據的組織,這一特性非常有用。多個團隊可以全部訂閱進入系統的數據話題,或任意訂閱其他團隊對數據進行過某些處理後創建的話題。這一切並不會對資料庫等負載密集型基礎架構造成額外的壓力。
直接寫入Kafka還可避免回壓(Backpressure)問題。回壓是指當負載峰值導致數據流入速度超過組件實時處理能力的情況,這種情況可能導致處理工作停頓並可能丟失數據。按照設計,Kafka可以將數據保存很長時間,這意味著組件可以在方便的時候繼續進行處理,並可直接重啟動而無需擔心造成任何後果。
Samza可以使用以本地鍵值存儲方式實現的容錯檢查點系統存儲數據。這樣Samza即可獲得「至少一次」的交付保障,但面對由於數據可能多次交付造成的失敗,該技術無法對匯總後狀態(例如計數)提供精確恢復。
Samza提供的高級抽象使其在很多方面比Storm等系統提供的基元(Primitive)更易於配合使用。目前Samza只支持JVM語言,這意味著它在語言支持方面不如Storm靈活。
總結
對於已經具備或易於實現Hadoop和Kafka的環境,Apache Samza是流處理工作負載一個很好的選擇。Samza本身很適合有多個團隊需要使用(但相互之間並不一定緊密協調)不同處理階段的多個數據流的組織。Samza可大幅簡化很多流處理工作,可實現低延遲的性能。如果部署需求與當前系統不兼容,也許並不適合使用,但如果需要極低延遲的處理,或對嚴格的一次處理語義有較高需求,此時依然適合考慮。
混合處理系統:批處理和流處理
一些處理框架可同時處理批處理和流處理工作負載。這些框架可以用相同或相關的組件和API處理兩種類型的數據,藉此讓不同的處理需求得以簡化。
如你所見,這一特性主要是由Spark和Flink實現的,下文將介紹這兩種框架。實現這樣的功能重點在於兩種不同處理模式如何進行統一,以及要對固定和不固定數據集之間的關系進行何種假設。
雖然側重於某一種處理類型的項目會更好地滿足具體用例的要求,但混合框架意在提供一種數據處理的通用解決方案。這種框架不僅可以提供處理數據所需的方法,而且提供了自己的集成項、庫、工具,可勝任圖形分析、機器學習、互動式查詢等多種任務。
Apache Spark
Apache Spark是一種包含流處理能力的下一代批處理框架。與Hadoop的MapRece引擎基於各種相同原則開發而來的Spark主要側重於通過完善的內存計算和處理優化機制加快批處理工作負載的運行速度。
Spark可作為獨立集群部署(需要相應存儲層的配合),或可與Hadoop集成並取代MapRece引擎。
批處理模式
與MapRece不同,Spark的數據處理工作全部在內存中進行,只在一開始將數據讀入內存,以及將最終結果持久存儲時需要與存儲層交互。所有中間態的處理結果均存儲在內存中。
雖然內存中處理方式可大幅改善性能,Spark在處理與磁碟有關的任務時速度也有很大提升,因為通過提前對整個任務集進行分析可以實現更完善的整體式優化。為此Spark可創建代表所需執行的全部操作,需要操作的數據,以及操作和數據之間關系的Directed Acyclic Graph(有向無環圖),即DAG,藉此處理器可以對任務進行更智能的協調。
為了實現內存中批計算,Spark會使用一種名為Resilient Distributed Dataset(彈性分布式數據集),即RDD的模型來處理數據。這是一種代表數據集,只位於內存中,永恆不變的結構。針對RDD執行的操作可生成新的RDD。每個RDD可通過世系(Lineage)回溯至父級RDD,並最終回溯至磁碟上的數據。Spark可通過RDD在無需將每個操作的結果寫回磁碟的前提下實現容錯。
流處理模式
流處理能力是由Spark Streaming實現的。Spark本身在設計上主要面向批處理工作負載,為了彌補引擎設計和流處理工作負載特徵方面的差異,Spark實現了一種叫做微批(Micro-batch)*的概念。在具體策略方面該技術可以將數據流視作一系列非常小的「批」,藉此即可通過批處理引擎的原生語義進行處理。
Spark Streaming會以亞秒級增量對流進行緩沖,隨後這些緩沖會作為小規模的固定數據集進行批處理。這種方式的實際效果非常好,但相比真正的流處理框架在性能方面依然存在不足。
優勢和局限
使用Spark而非Hadoop MapRece的主要原因是速度。在內存計算策略和先進的DAG調度等機制的幫助下,Spark可以用更快速度處理相同的數據集。
Spark的另一個重要優勢在於多樣性。該產品可作為獨立集群部署,或與現有Hadoop集群集成。該產品可運行批處理和流處理,運行一個集群即可處理不同類型的任務。
除了引擎自身的能力外,圍繞Spark還建立了包含各種庫的生態系統,可為機器學習、互動式查詢等任務提供更好的支持。相比MapRece,Spark任務更是「眾所周知」地易於編寫,因此可大幅提高生產力。
為流處理系統採用批處理的方法,需要對進入系統的數據進行緩沖。緩沖機制使得該技術可以處理非常大量的傳入數據,提高整體吞吐率,但等待緩沖區清空也會導致延遲增高。這意味著Spark Streaming可能不適合處理對延遲有較高要求的工作負載。
由於內存通常比磁碟空間更貴,因此相比基於磁碟的系統,Spark成本更高。然而處理速度的提升意味著可以更快速完成任務,在需要按照小時數為資源付費的環境中,這一特性通常可以抵消增加的成本。
Spark內存計算這一設計的另一個後果是,如果部署在共享的集群中可能會遇到資源不足的問題。相比HadoopMapRece,Spark的資源消耗更大,可能會對需要在同一時間使用集群的其他任務產生影響。從本質來看,Spark更不適合與Hadoop堆棧的其他組件共存一處。
總結
Spark是多樣化工作負載處理任務的最佳選擇。Spark批處理能力以更高內存佔用為代價提供了無與倫比的速度優勢。對於重視吞吐率而非延遲的工作負載,則比較適合使用Spark Streaming作為流處理解決方案。
Apache Flink
Apache Flink是一種可以處理批處理任務的流處理框架。該技術可將批處理數據視作具備有限邊界的數據流,藉此將批處理任務作為流處理的子集加以處理。為所有處理任務採取流處理為先的方法會產生一系列有趣的副作用。
這種流處理為先的方法也叫做Kappa架構,與之相對的是更加被廣為人知的Lambda架構(該架構中使用批處理作為主要處理方法,使用流作為補充並提供早期未經提煉的結果)。Kappa架構中會對一切進行流處理,藉此對模型進行簡化,而這一切是在最近流處理引擎逐漸成熟後才可行的。
流處理模型
Flink的流處理模型在處理傳入數據時會將每一項視作真正的數據流。Flink提供的DataStream API可用於處理無盡的數據流。Flink可配合使用的基本組件包括:
· Stream(流)是指在系統中流轉的,永恆不變的無邊界數據集
· Operator(操作方)是指針對數據流執行操作以產生其他數據流的功能
· Source(源)是指數據流進入系統的入口點
· Sink(槽)是指數據流離開Flink系統後進入到的位置,槽可以是資料庫或到其他系統的連接器
為了在計算過程中遇到問題後能夠恢復,流處理任務會在預定時間點創建快照。為了實現狀態存儲,Flink可配合多種狀態後端系統使用,具體取決於所需實現的復雜度和持久性級別。
此外Flink的流處理能力還可以理解「事件時間」這一概念,這是指事件實際發生的時間,此外該功能還可以處理會話。這意味著可以通過某種有趣的方式確保執行順序和分組。
批處理模型
Flink的批處理模型在很大程度上僅僅是對流處理模型的擴展。此時模型不再從持續流中讀取數據,而是從持久存儲中以流的形式讀取有邊界的數據集。Flink會對這些處理模型使用完全相同的運行時。
Flink可以對批處理工作負載實現一定的優化。例如由於批處理操作可通過持久存儲加以支持,Flink可以不對批處理工作負載創建快照。數據依然可以恢復,但常規處理操作可以執行得更快。
另一個優化是對批處理任務進行分解,這樣即可在需要的時候調用不同階段和組件。藉此Flink可以與集群的其他用戶更好地共存。對任務提前進行分析使得Flink可以查看需要執行的所有操作、數據集的大小,以及下游需要執行的操作步驟,藉此實現進一步的優化。
優勢和局限
Flink目前是處理框架領域一個獨特的技術。雖然Spark也可以執行批處理和流處理,但Spark的流處理採取的微批架構使其無法適用於很多用例。Flink流處理為先的方法可提供低延遲,高吞吐率,近乎逐項處理的能力。
Flink的很多組件是自行管理的。雖然這種做法較為罕見,但出於性能方面的原因,該技術可自行管理內存,無需依賴原生的Java垃圾回收機制。與Spark不同,待處理數據的特徵發生變化後Flink無需手工優化和調整,並且該技術也可以自行處理數據分區和自動緩存等操作。
Flink會通過多種方式對工作進行分許進而優化任務。這種分析在部分程度上類似於SQL查詢規劃器對關系型資料庫所做的優化,可針對特定任務確定最高效的實現方法。該技術還支持多階段並行執行,同時可將受阻任務的數據集合在一起。對於迭代式任務,出於性能方面的考慮,Flink會嘗試在存儲數據的節點上執行相應的計算任務。此外還可進行「增量迭代」,或僅對數據中有改動的部分進行迭代。
在用戶工具方面,Flink提供了基於Web的調度視圖,藉此可輕松管理任務並查看系統狀態。用戶也可以查看已提交任務的優化方案,藉此了解任務最終是如何在集群中實現的。對於分析類任務,Flink提供了類似SQL的查詢,圖形化處理,以及機器學習庫,此外還支持內存計算。
Flink能很好地與其他組件配合使用。如果配合Hadoop 堆棧使用,該技術可以很好地融入整個環境,在任何時候都只佔用必要的資源。該技術可輕松地與YARN、HDFS和Kafka 集成。在兼容包的幫助下,Flink還可以運行為其他處理框架,例如Hadoop和Storm編寫的任務。
目前Flink最大的局限之一在於這依然是一個非常「年幼」的項目。現實環境中該項目的大規模部署尚不如其他處理框架那麼常見,對於Flink在縮放能力方面的局限目前也沒有較為深入的研究。隨著快速開發周期的推進和兼容包等功能的完善,當越來越多的組織開始嘗試時,可能會出現越來越多的Flink部署
總結
Flink提供了低延遲流處理,同時可支持傳統的批處理任務。Flink也許最適合有極高流處理需求,並有少量批處理任務的組織。該技術可兼容原生Storm和Hadoop程序,可在YARN管理的集群上運行,因此可以很方便地進行評估。快速進展的開發工作使其值得被大家關注。
結論
大數據系統可使用多種處理技術。
對於僅需要批處理的工作負載,如果對時間不敏感,比其他解決方案實現成本更低的Hadoop將會是一個好選擇。
對於僅需要流處理的工作負載,Storm可支持更廣泛的語言並實現極低延遲的處理,但默認配置可能產生重復結果並且無法保證順序。Samza與YARN和Kafka緊密集成可提供更大靈活性,更易用的多團隊使用,以及更簡單的復制和狀態管理。
對於混合型工作負載,Spark可提供高速批處理和微批處理模式的流處理。該技術的支持更完善,具備各種集成庫和工具,可實現靈活的集成。Flink提供了真正的流處理並具備批處理能力,通過深度優化可運行針對其他平台編寫的任務,提供低延遲的處理,但實際應用方面還為時過早。
最適合的解決方案主要取決於待處理數據的狀態,對處理所需時間的需求,以及希望得到的結果。具體是使用全功能解決方案或主要側重於某種項目的解決方案,這個問題需要慎重權衡。隨著逐漸成熟並被廣泛接受,在評估任何新出現的創新型解決方案時都需要考慮類似的問題。
『貳』 常見的大數據採集工具有哪些
1、離線搜集工具:ETL
在數據倉庫的語境下,ETL基本上便是數據搜集的代表,包括數據的提取(Extract)、轉換(Transform)和載入(Load)。在轉換的過程中,需求針對具體的事務場景對數據進行治理,例如進行不合法數據監測與過濾、格式轉換與數據規范化、數據替換、確保數據完整性等。
2、實時搜集工具:Flume/Kafka
實時搜集首要用在考慮流處理的事務場景,比方,用於記錄數據源的履行的各種操作活動,比方網路監控的流量辦理、金融運用的股票記賬和 web 伺服器記錄的用戶訪問行為。在流處理場景,數據搜集會成為Kafka的顧客,就像一個水壩一般將上游源源不斷的數據攔截住,然後依據事務場景做對應的處理(例如去重、去噪、中心核算等),之後再寫入到對應的數據存儲中。
3、互聯網搜集工具:Crawler, DPI等
Scribe是Facebook開發的數據(日誌)搜集體系。又被稱為網頁蜘蛛,網路機器人,是一種按照一定的規矩,自動地抓取萬維網信息的程序或者腳本,它支持圖片、音頻、視頻等文件或附件的搜集。
除了網路中包含的內容之外,關於網路流量的搜集能夠運用DPI或DFI等帶寬辦理技術進行處理。
『叄』 大數據工程師常用的大數據處理框架是什麼
【摘要】大數據開展至今,大數據處理主要分為兩類大的需求,一是批處理,一是流處理。在企業的實踐事務場景傍邊,可能會只需求批處理或者流處理,也可能一起需求批處理和流處理,這就使得建立大數據體系平台的時候,需求依據具體場景來進行技能選型,那麼大數據工程師常用的大數據處理框架是什麼呢?接下來就一起了解一下吧。
1、批處理
批處理是大數據處理傍邊的遍及需求,批處理主要操作大容量靜態數據集,並在核算進程完成後返回成果。鑒於這樣的處理模式,批處理有個明顯的缺點,便是面對大規模的數據,在核算處理的功率上,不盡如人意。
現在來說,批處理在應對很多持久數據方面的體現極為出色,因而經常被用於對歷史數據進行剖析。
2、流處理
批處理之後呈現的另一種遍及需求,便是流處理,針對實時進入體系的數據進行核算操作,處理成果馬上可用,並會跟著新數據的抵達繼續更新。
在實時性上,流處理體現優異,但是流處理同一時間只能處理一條(真正的流處理)或很少數(微批處理,Micro-batch
Processing)數據,不同記錄間只維持最少數的狀況,對硬體的要求也要更高。
3、批處理+流處理
在實踐的使用傍邊,批處理和流處理一起存在的場景也很多,混合處理框架就旨在處理這類問題。供給一種數據處理的通用處理方案,不僅可以供給處理數據所需的辦法,一起供給自己的集成項、庫、東西,可滿足圖形剖析、機器學習、互動式查詢等多種場景。
關於大數據工程師常用處理框架,就和大家分享到這里了,大數據行業作為不斷發展的行業,相信在未來的發展前景必然是不可估量的,希望大家不斷學習和提高,加油!
『肆』 主流的大數據分析框架有哪些
1、Hadoop
Hadoop 採用 Map Rece 分布式計算框架,根據 GFS開發了 HDFS 分布式文件系統,根據 Big Table 開發了 HBase數據存儲系統。Hadoop 的開源特性使其成為分布式計算系統的事實上的國際標准。Yahoo,Facebook,Amazon 以及國內的網路,阿里巴巴等眾多互聯網公司都以 Hadoop 為基礎搭建自己的分布。
2、Spark
Spark 是在 Hadoop 的基礎上進行了一些架構上的改良。Spark 與Hadoop 最大的不同點在於,Hadoop 使用硬碟來存儲數據,而Spark 使用內存來存儲數據,因此 Spark 可以提供超過 Ha?doop 100 倍的運算速度。由於內存斷電後會丟失數據,Spark不能用於處理需要長期保存的數據。
3、 Storm
Storm 是 Twitter 主推的分布式計算系統。它在Hadoop的基礎上提供了實時運算的特性,可以實時的處理大數據流。不同於Hadoop和Spark,Storm不進行數據的收集和存儲工作,它直接通過網路實時的接受數據並且實時的處理數據,然後直接通過網路實時的傳回結果。
4、Samza
Samza 是由 Linked In 開源的一項技術,是一個分布式流處理框架,專用於實時數據的處理,非常像Twitter的流處理系統Storm。不同的是Sam?za 基於 Hadoop,而且使用了 Linked In 自家的 Kafka 分布式消息系統。
Samza 非常適用於實時流數據處理的業務,如數據跟蹤、日誌服務、實時服務等應用,它能夠幫助開發者進行高速消息處理,同時還具有良好的容錯能力。
『伍』 大數據架構究竟用哪種框架更為合適
大數據數量龐大,格式多樣化。大量數據由家庭、製造工廠和辦公場所的各種設備、互聯網事務交易、社交網路的活動、自動化感測器、移動設備以及科研儀器等生成。它的爆炸式增長已超出了傳統IT基礎架構的處理能力,給企業和社會帶來嚴峻的數據管理問題。因此必須開發新的數據架構,圍繞「數據收集、數據管理、數據分析、知識形成、智慧行動」的全過程,開發使用這些數據,釋放出更多數據的隱藏價值。
一、大數據建設思路
1)數據的獲得
通過大數據的引入和部署,可以達到如下效果:
1)數據整合
·統一數據模型:承載企業數據模型,促進企業各域數據邏輯模型的統一;
·統一數據標准:統一建立標準的數據編碼目錄,實現企業數據的標准化與統一存儲;
·統一數據視圖:實現統一數據視圖,使企業在客戶、產品和資源等視角獲取到一致的信息。
2)數據質量管控
·數據質量校驗:根據規則對所存儲的數據進行一致性、完整性和准確性的校驗,保證數據的一致性、完整性和准確性;
·數據質量管控:通過建立企業數據的質量標准、數據管控的組織、數據管控的流程,對數據質量進行統一管控,以達到數據質量逐步完善。
3)數據共享
·消除網狀介面,建立大數據共享中心,為各業務系統提供共享數據,降低介面復雜度,提高系統間介面效率與質量;
·以實時或准實時的方式將整合或計算好的數據向外系統提供。
4)數據應用
·查詢應用:平台實現條件不固定、不可預見、格式靈活的按需查詢功能;
·固定報表應用:視統計維度和指標固定的分析結果的展示,可根據業務系統的需求,分析產生各種業務報表數據等;
·動態分析應用:按關心的維度和指標對數據進行主題性的分析,動態分析應用中維度和指標不固定。
四、總結
基於分布式技術構建的大數據平台能夠有效降低數據存儲成本,提升數據分析處理效率,並具備海量數據、高並發場景的支撐能力,可大幅縮短數據查詢響應時間,滿足企業各上層應用的數據需求。
『陸』 大數據處理時使用的框架
大數據處理目前(2020年12月)主流使用hadoop框架,另外數據挖掘和機器學習為主的應用可使用spark框架。
『柒』 大數據時代,那麼一般通過什麼方法(軟體)收集、分析和可視化數據
數據是平台運營商的重要資產,可能提供API介面允許第三方有限度地使用,但是顯然是為了增強自身的業務,與此目的抵觸的行為都會受到約束。
收集數據主要是通過計算機和網路。凡是經過計算機處理的數據都很容易收集,比如瀏覽器里的搜索、點擊、網上購物、……其他數據(比如氣溫、海水鹽度、地震波)可以通過感測器轉化成數字信號輸入計算機。
收集到的數據一般要先經過整理,常用的軟體:Tableau和Impure是功能比較全面的,Refine和Wrangler是比較純粹的數據整理工具,Weka用於數據挖掘。
Hadoop是一個能夠對大量數據進行分布式處理的軟體框架。用於統計分析的R語言有個擴展R + Hadoop,可以在Hadoop集群上運行R代碼。更具體的自己搜索吧。
可視化輸出的工具很多。建議參考wikipedia的「數據可視化」條目。
Tableau、Impure都有可視化功能。R語言也可以繪圖。
還有很多可以用來在網頁上實現可視化輸出的框架或者控制項。
大致基於四種技術:Flash(Flex)或者JS(HTML5)或者Java或者ASP.NET(Silverlight)
Flash的有Degrafa、BirdEye、Axiis、Open Flash Chart
JS的有Ajax.org、Sencha Ext JS、Filament、jQchart、Flot、Sparklines、gRaphael、TufteGraph、Exhibit、PlotKit、ExplorerCanvas、MilkChart、Google Chart API、Protovis
Java的有Choosel、google-visualization-java、GWT Chronoscope、JFreeChart
ASP.NET的有Telerik Charts、Visifire、Dundas Chart
目前我比較喜歡d3(Data-Driven Documents),圖形種類豐富,有交互能力,你可以去d3js.org看看,有很多種圖形的demo。
『捌』 大數據採集的方法
大數據的採集方法
1)資料庫採集
Redis、MongoDB和HBase等NoSQL資料庫常用於數據的採集。企業通過在採集端部署大量資料庫,並在這些資料庫之間進行負載均衡和分片,來完成大數據採集工作。
2)系統日誌採集
系統日誌採集主要是手機公司業務平台日常產生的大量日誌數據,供離線和在線的大數據分析系統使用。高可用性、高可靠性、可擴展性是日誌收集系統所具有的基本特徵。系統日誌採集工具均採用分布式架構,能夠滿足每秒數百MB的日誌數據採集和傳輸需求。
3)網路數據採集
網路數據採集是指通過網路爬蟲或網站公開API等方式從網站上獲取數據信息的過程。
4)感知設備數據採集
感知設備數據採集是指通過感測器、攝像頭和其他智能終端自動採集信號、圖片或錄像來獲取數據。
『玖』 大數據具體是學習什麼內容呢主要框架是什麼
首先,學習大數據是需要有java,python和R語言的基礎。
1) Java學習到什麼樣的程度才可以學習大數據呢?
java需要學會javaSE即可。javaweb,javaee對於大數據用不到。學會了javase就可以看懂hadoop框架。
2) python是最容易學習的,難易程度:python java Scala 。
python不是比java更直觀好理解么,因為會了Python 還是要學習java的,你學會了java,再來學習python會很簡單的,一周的時間就可以學會python。
3) R語言也可以學習,但是不推薦,因為java用的人最多,大數據的第一個框架Hadoop,底層全是Java寫的。就算學會了R還是看不懂hadoop。
java在大數據中的作用是構成大數據的語言,大數據的第一個框架Hadoop以及其他大數據技術框架,底層語言全是Java寫的,所以推薦首選學習java
大數據開發學習路線:
第一階段:Hadoop生態架構技術
1、語言基礎
Java:多理解和實踐在Java虛擬機的內存管理、以及多線程、線程池、設計模式、並行化就可以,不需要深入掌握。
Linux:系統安裝、基本命令、網路配置、Vim編輯器、進程管理、Shell腳本、虛擬機的菜單熟悉等等。
Python:基礎語法,數據結構,函數,條件判斷,循環等基礎知識。
2、環境准備
這里介紹在windows電腦搭建完全分布式,1主2從。
VMware虛擬機、Linux系統(Centos6.5)、Hadoop安裝包,這里准備好Hadoop完全分布式集群環境。
3、MapRece
MapRece分布式離線計算框架,是Hadoop核心編程模型。
4、HDFS1.0/2.0
HDFS能提供高吞吐量的數據訪問,適合大規模數據集上的應用。
5、Yarn(Hadoop2.0)
Yarn是一個資源調度平台,主要負責給任務分配資源。
6、Hive
Hive是一個數據倉庫,所有的數據都是存儲在HDFS上的。使用Hive主要是寫Hql。
7、Spark
Spark 是專為大規模數據處理而設計的快速通用的計算引擎。
8、SparkStreaming
Spark Streaming是實時處理框架,數據是一批一批的處理。
9、SparkHive
Spark作為Hive的計算引擎,將Hive的查詢作為Spark的任務提交到Spark集群上進行計算,可以提高Hive查詢的性能。
10、Storm
Storm是一個實時計算框架,Storm是對實時新增的每一條數據進行處理,是一條一條的處理,可以保證數據處理的時效性。
11、Zookeeper
Zookeeper是很多大數據框架的基礎,是集群的管理者。
12、Hbase
Hbase是一個Nosql資料庫,是高可靠、面向列的、可伸縮的、分布式的資料庫。
13、Kafka
kafka是一個消息中間件,作為一個中間緩沖層。
14、Flume
Flume常見的就是採集應用產生的日誌文件中的數據,一般有兩個流程。
一個是Flume採集數據存儲到Kafka中,方便Storm或者SparkStreaming進行實時處理。
另一個流程是Flume採集的數據存儲到HDFS上,為了後期使用hadoop或者spark進行離線處理。
第二階段:數據挖掘演算法
1、中文分詞
開源分詞庫的離線和在線應用
2、自然語言處理
文本相關性演算法
3、推薦演算法
基於CB、CF,歸一法,Mahout應用。
4、分類演算法
NB、SVM
5、回歸演算法
LR、DecisionTree
6、聚類演算法
層次聚類、Kmeans
7、神經網路與深度學習
NN、Tensorflow
以上就是學習Hadoop開發的一個詳細路線,如果需要了解具體框架的開發技術,可咨詢加米穀大數據老師,詳細了解。
學習大數據開發需要掌握哪些技術呢?
(1)Java語言基礎
Java開發介紹、熟悉Eclipse開發工具、Java語言基礎、Java流程式控制制、Java字元串、Java數組與類和對象、數字處理類與核心技術、I/O與反射、多線程、Swing程序與集合類
(2)HTML、CSS與Java
PC端網站布局、HTML5+CSS3基礎、WebApp頁面布局、原生Java交互功能開發、Ajax非同步交互、jQuery應用
(3)JavaWeb和資料庫
資料庫、JavaWeb開發核心、JavaWeb開發內幕
Linux&Hadoop生態體系
Linux體系、Hadoop離線計算大綱、分布式資料庫Hbase、數據倉庫Hive、數據遷移工具Sqoop、Flume分布式日誌框架
分布式計算框架和Spark&Strom生態體系
(1)分布式計算框架
Python編程語言、Scala編程語言、Spark大數據處理、Spark—Streaming大數據處理、Spark—Mlib機器學習、Spark—GraphX 圖計算、實戰一:基於Spark的推薦系統(某一線公司真實項目)、實戰二:新浪網(www.sina.com.cn)
(2)storm技術架構體系
Storm原理與基礎、消息隊列kafka、Redis工具、zookeeper詳解、大數據項目實戰數據獲取、數據處理、數據分析、數據展現、數據應用
大數據分析—AI(人工智慧)Data
Analyze工作環境准備&數據分析基礎、數據可視化、Python機器學習
以上的回答希望對你有所幫助